Skip to main content

Simulation of the Field of View in AR and VR Headsets

  • Conference paper
  • First Online:
Virtual, Augmented and Mixed Reality (HCII 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12770))

Included in the following conference series:

Abstract

Technical parameters of today’s Optical See-Through Head Mounted Displays (OST-HMDs) do not fully match the industrial requirements yet: Especially the small field of view (FoV) of current OST-HMDs is a hindrance for industrial use. The FoV is a technical parameter the user is always confronted with while the immersive experience of Augmented Reality takes place: It defines the extent of the observable augmented world where virtual objects can be perceived. This experience is limited by the augmented objects being cut off at the screen boundaries. This paper describes a scientific approach to simulate the FoV of OST-HMDs with the help of AR and VR devices. It aims at enabling tests and validation of necessary FoV-specifications of HMDs. Therefore, a study to simulate different FoVs and evaluate the necessary FoV size for manual two-handed automotive assembly tasks is presented. Results show significant differences in ratings between AR and VR but nearly no differences between the participant groups “AR/VR experts” and “assembly line workers”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alce, G., Hermodsson, K., Wallergård, M., Thern, L., Hadzovic, T.: A prototyping method to simulate wearable augmented reality interaction in a virtual environment - a pilot study. Int. J. Virtual World Hum. Comput. Interact. 3, 18–28 (2015). https://doi.org/10.11159/vwhci.2015.003

  2. Blattgerste, J., Strenge, B., Renner, P., Pfeiffer, T., Essig, K.: Comparing conventional and augmented reality instructions for manual assembly tasks. In: Proceedings of the 10th International Conference on Pervasive Technologies Related to Assistive Environments (PETRA 2017), pp. 75–82 (2017). https://doi.org/10.1145/3056540.3056547

  3. De Souza Cardoso, L.F., Mariano, F., Zorzal, E.: A survey of industrial augmented reality. Comput. Ind. Eng. 139, 106159 (2019). https://doi.org/10.1016/j.cie.2019.106159

    Article  Google Scholar 

  4. Friedrich, W.: ARVIKA - augmented reality for development, production and service. In: Proceedings of the International Symposium on Mixed and Augmented Reality (ISMAR 2002), pp. 3–4 (2002)

    Google Scholar 

  5. Fuchs, V., Kamradt, M., Peters, A.: Device and method for the visual support of a user in a working environment (patent application DE102017219067A1) (2019)

    Google Scholar 

  6. Gao, Y., Liu, Y., Normand, J.M., Moreau, G., Gao, X., Wang, Y.: A study on differences in human perception between a real and an AR scene viewed in an OST-HMD. J. Soc. Inf. Disp. 27(3), 155–171 (2019). https://doi.org/10.1002/jsid.752

    Article  Google Scholar 

  7. Gialos, A., Zeimpekis, V.: Defining and testing system parameters for enhancing vision picking technology in warehouse operations. Int. J. Logist. Syst. Manag. 11(1), 19–30 (2020)

    Google Scholar 

  8. Grubert, J., et al.: Extended investigations of user-related issues in mobile industrial AR. In: 2010 IEEE International Symposium on Mixed and Augmented Reality, pp. 229–230 (2010). https://doi.org/10.1109/ISMAR.2010.5643581

  9. Gupta, A., Fox, D., Curless, B., Cohen, M.: DuploTrack: a real-time system for authoring and guiding duplo block assembly. In: UIST 2012 - Proceedings of the 25th Annual ACM Symposium on User Interface Software and Technology, pp. 389–402 (2012). https://doi.org/10.1145/2380116.2380167

  10. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  11. Henderson, S., Feiner, S.: Exploring the benefits of augmented reality documentation for maintenance and repair. IEEE Trans. Visual Comput. Graphics 17, 1355–1368 (2011). https://doi.org/10.1109/TVCG.2010.245

    Article  Google Scholar 

  12. Jones, J., Ii, J., Bolas, M.: Peripheral stimulation and its effect on perceived spatial scale in virtual environments. IEEE Trans. Visual Comput. Graphics 19, 701–10 (2013). https://doi.org/10.1109/TVCG.2013.37

    Article  Google Scholar 

  13. Kellner, F., Bolte, B., Bruder, G., Rautenberg, U., Steinicke, F., Lappe, M., Koch, R.: Geometric calibration of head-mounted displays and its effects on distance estimation. IEEE Trans. Visual Comput. Graphics 18(4), 589–596 (2012)

    Article  Google Scholar 

  14. Khuong, B., Kiyokawa, K., Miller, A., Viola, J., Mashita, T., Takemura, H.: The effectiveness of an AR-based context-aware assembly support system in object assembly. In: Proceedings of the IEEE Virtual Reality Conference 2014, pp. 57–62 (2014). https://doi.org/10.1109/VR.2014.6802051

  15. Lee, C., Rincon, G.A., Meyer, G., Höllerer, T., Bowman, D.A.: The effects of visual realism on search tasks in mixed reality simulation. IEEE Trans. Visual Comput. Graphics 19(4), 547–556 (2013)

    Article  Google Scholar 

  16. Miller, J.: Overcoming the limitations of commodity augmented reality head mounted displays for use in product assembly. Master’s thesis, Iowa State University (2019)

    Google Scholar 

  17. Peacock, J.L., Watsonand, J.J., Wilcox, S.M.: Augmented reality assembly assistance and monitoring (patent application US10366521) (2019)

    Google Scholar 

  18. Radkowski, R., Herrema, J., Oliver, J.: Augmented reality-based manual assembly support with visual features for different degrees of difficulty. Int. J. Hum.-Comput. Interact. 31, 337–349 (2015). https://doi.org/10.1080/10447318.2014.994194

    Article  Google Scholar 

  19. Ragan, E., Wilkes, C., Bowman, D., Höllerer, T.: Simulation of augmented reality systems in purely virtual environments. In: IEEE Virtual Reality Conference, pp. 287–288 (2009). https://doi.org/10.1109/VR.2009.4811058

  20. Ren, D., Goldschwendt, T., Chang, Y., Höllerer, T.: Evaluating wide-field-of-view augmented reality with mixed reality simulation. In: Proceedings of the IEEE Virtual Reality Conference 2016, pp. 93–102 (2016). https://doi.org/10.1109/VR.2016.7504692

  21. Renner, P., Pfeiffer, T.: Evaluation of attention guiding techniques for augmented reality-based assistance in picking and assembly tasks. In: Proceedings of the 22nd International Conference on Intelligent User Interfaces Companion, pp. 89–92 (2017). https://doi.org/10.1145/3030024.3040987

  22. Rodriguez, L., Quint, F., Gorecky, D., Romero, D., Siller, H.: Developing a mixed reality assistance system based on projection mapping technology for manual operations at assembly workstations. Procedia Comput. Sci. 75, 327–333 (2015). https://doi.org/10.1016/j.procs.2015.12.254

    Article  Google Scholar 

  23. Schwerdtfeger, B., et al.: Pick-by-vision: a first stress test. In: 2009 8th IEEE International Symposium on Mixed and Augmented Reality, pp. 115–124. IEEE (2009)

    Google Scholar 

  24. Steindecker, E., Stelzer, R., Saske, B.: Requirements for virtualization of AR displays within VR environments. In: Shumaker, R., Lackey, S. (eds.) VAMR 2014. LNCS, vol. 8525, pp. 105–116. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07458-0_11

    Chapter  Google Scholar 

  25. Theis, S., Mertens, A., Wille, M., Rasche, P., Alexander, T., Schlick, C.: Effects of data glasses on human workload and performance during assembly and disassembly tasks. In: Proceedings 19th Triennial Congress of the IEA, vol. 9, pp. 14–21 (2015)

    Google Scholar 

  26. Thiel, K., Jundt, E., Klinker, G.: [POSTER] automated evaluation and configuration of object tracking for augmented reality. In: 2017 IEEE International Symposium on Mixed and Augmented Reality Adjunct Proceedings, pp. 132–134 (2017). https://doi.org/10.1109/ISMAR-Adjunct.2017.48

  27. Wafaa, A., de Bonnefoy, N., Dubois, E., Torguet, P., Jessel, J.P.: Virtual reality simulation for prototyping augmented reality. In: International Symposium on Ubiquitous Virtual Reality (ISUVR 2008), pp. 55–58 (2008). https://doi.org/10.1109/ISUVR.2008.9

  28. Ware, C.: Information Visualization: Perception for Design, 3rd edn. Morgan Kaufmann Publishers Inc., San Francisco (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Tümler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Brauns, S., Tümler, J. (2021). Simulation of the Field of View in AR and VR Headsets. In: Chen, J.Y.C., Fragomeni, G. (eds) Virtual, Augmented and Mixed Reality. HCII 2021. Lecture Notes in Computer Science(), vol 12770. Springer, Cham. https://doi.org/10.1007/978-3-030-77599-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77599-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77598-8

  • Online ISBN: 978-3-030-77599-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics