Skip to main content

Brown Hands Aren’t Terrorists: Challenges in Image Classification of Violent Extremist Content

  • Conference paper
  • First Online:
Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. AI, Product and Service (HCII 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12778))

Included in the following conference series:

  • 1709 Accesses

Abstract

The Internet eases the broadcasting of data, information, and propaganda. The availability of myriad social media has turned the spotlight on violent extremism and expanded the scope and impact of ideology-oriented acts of violence. Automated image classification for this content is a highly sought-after goal, yet raises the question of potential bias and discrimination in case of incorrect classification. A requirement for addressing, and potentially counter-acting, bias, is the existence of a reliable training dataset. To demonstrate how such a dataset can be developed for highly sensitive topics, this article operationalizes the process of human-coding images posted on the open social web by violent religious extremists into four master categories and four subcategories. We concentrate on the group ISIS due to their prolific digital content creation. The developed training dataset is used to train a convolutional neural network to automatically detect extremist visual content on social media and determine its category. Using inter-coder reliability, we show that the training data can be reliably coded despite highly nuanced data and the existence of various categories and subcategories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Generalized descriptions of removable/censor-provoking content is available in the Terms of Service sections of the platforms, see for example Facebook’s Community Standards Enforcement page: https://govtrequests.facebook.com/community-standards-enforcement.

References

  1. Ligon, G.S., Hall, M., Braun, C.: Digital participation roles of the global jihad: social media’s role in bringing together vulnerable individuals and VEO content. In: Nah, F.F.-H., Xiao, B.S. (eds.) HCIBGO 2018. LNCS, vol. 10923, pp. 485–495. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91716-0_39

    Chapter  Google Scholar 

  2. Hall, M., Logan, M., Ligon, G.S., Derrick, D.C.: Do machines replicate humans? Toward a unified understanding of radicalizing content on the open social web. Policy Internet 12(1) (2020). https://doi.org/10.1002/poi3.223

  3. Bradshaw, S.: Disinformation optimised: gaming search engine algorithms to amplify junk news. Internet Policy Rev. 8(4), 1–24 (2019). https://doi.org/10.14763/2019.4.1442

  4. De-Arteaga, M., Fogliato, R., Chouldechova, A.: A case for humans-in-the-loop: decisions in the presence of erroneous algorithmic scores. In: Conference Human Factors Computing System – Proceedings (2020). https://doi.org/10.1145/3313831.3376638

  5. Hall, M., Mazarakis, A., Chorley, M.J., Caton, S.: Editorial of the special issue on following user pathways: key contributions and future directions in cross-platform social media research. Int. J. Hum. Comput. Interact. 34(10), 895–912 (2018). https://doi.org/10.1080/10447318.2018.1471575

    Article  Google Scholar 

  6. Dubrawski, A., Miller, K., Barnes, M., Boecking, B., Kennedy, E.: Leveraging publicly available data to discern patterns of human-trafficking activity. J. Hum. Traffick. 1(1), 65–85 (2015). https://doi.org/10.1080/23322705.2015.1015342

    Article  Google Scholar 

  7. Ulges, A., Stahl, A.: Automatic detection of child pornography using color visual words. In: 2011 IEEE International Conference on Multimedia and Expo, pp. 1–6 (2011). https://doi.org/10.1109/ICME.2011.6011977

  8. Wendlandt, L., Mihalcea, R., Boyd, R.L., Pennebaker, J.W.: Multimodal analysis and prediction of latent user dimensions. In: Ciampaglia, G.L., Mashhadi, A., Yasseri, T. (eds.) SocInfo 2017. LNCS, vol. 10539, pp. 323–340. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67217-5_20

    Chapter  Google Scholar 

  9. Hashemi, M., Hall, M.: Identifying the responsible group for extreme acts of violence through pattern recognition. In: Nah, F.H., Xiao, B. (eds.) HCI in Business, Government, and Organizations. HCIBGO 2018. Lecture Notes in Computer Science, vol. 10923, pp. 594–605. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91716-0_47

    Chapter  Google Scholar 

  10. Hashemi, M., Hall, M.: Detecting and classifying online dark visual propaganda. Image Vis. Comput. 89, 95–105 (2019). https://doi.org/10.1016/j.imavis.2019.06.001

    Article  Google Scholar 

  11. Dowthwaite, L., Seth, S.: IEEE P7003 TM Standard for Algorithmic Bias Considerations. In: 2018 IEEE/ACM International Workshop on Software Fairness (FairWare), pp. 38–41 (2018)

    Google Scholar 

  12. Dressel, J., Farid, H.: The accuracy, fairness, and limits of predicting recidivism. Sci. Adv. 4(1), eaao5580 (2018)

    Article  Google Scholar 

  13. Khosla, A., Zhou, T., Malisiewicz, T., Efros, A.A., Torralba, A.: Undoing the damage of dataset bias. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7572, pp. 158–171. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33718-5_12

    Chapter  Google Scholar 

  14. Raghavan, M., Barocas, S., Kleinberg, J., Levy, K.: Mitigating bias in algorithmic hiring: evaluating claims and practices (2020)

    Google Scholar 

  15. Obermeyer, Z., Powers, B., Vogeli, C., Mullainathan, S.: Dissecting racial bias in an algorithm used to manage the health of populations. Science (80-.) 366(6464), 447–453 (2019). https://doi.org/10.1126/science.aax2342

  16. Caliskan, A., Bryson, J.J., Narayanan, A.: Semantics derived automatically from language corpora contain human-like biases. Science (80-.) 356(6334), 183–186 (2017). https://doi.org/10.1126/science.aal4230

  17. Caton, S., Haas, C.: Fairness in machine learning: a survey. arXiv, October 2020

    Google Scholar 

  18. Oulasvirta, A., Hornbæk, K.: HCI research as problem-solving. In: ACM Conference on Human Factors in Computing Systems, CHI 2016, pp. 4956–4967 (2016). https://doi.org/10.1145/2858036.2858283

  19. Derrick, D.C., Ligon, G.S., Harms, M., Mahoney, W.: Cyber-sophistication assessment methodology for public-facing terrorist web sites. J. Inf. Warf. 16(1), 13–30 (2017)

    Google Scholar 

  20. Nelson, R.: A Chronology and glossary of propaganda in the United States, Annotated (1996)

    Google Scholar 

  21. Bolognesi, M., Pilgram, R., van den Heerik, R.: Reliability in content analysis: the case of semantic feature norms classification. Behav. Res. Methods 49(6), 1984–2001 (2016). https://doi.org/10.3758/s13428-016-0838-6

    Article  Google Scholar 

  22. Alom, Z., et al.: The history began from AlexNet: a comprehensive survey on deep learning approaches (2018). https://doi.org/10.1016/S0011-9164(00)80105-8

  23. Muñoz, S.R., Bangdiwala, S.I.: Interpretation of Kappa and B statistics measures of agreement. J. Appl. Stat. 24(1), 105–112 (1997). https://doi.org/10.1080/02664769723918

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Margeret Hall .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hall, M., Haas, C. (2021). Brown Hands Aren’t Terrorists: Challenges in Image Classification of Violent Extremist Content. In: Duffy, V.G. (eds) Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. AI, Product and Service. HCII 2021. Lecture Notes in Computer Science(), vol 12778. Springer, Cham. https://doi.org/10.1007/978-3-030-77820-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77820-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77819-4

  • Online ISBN: 978-3-030-77820-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics