Skip to main content

Automated Escalation and Incident Management in Healthcare During Mass Casualties and Pandemic Events

  • Conference paper
  • First Online:
Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. AI, Product and Service (HCII 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12778))

Included in the following conference series:

  • 1663 Accesses

Abstract

We present Hypercare – a system for automated escalation and incident management in healthcare, which allows clinicians to create escalation logic in the hospitals. We present eight common escalation use cases and the results of a heuristic evaluation of the front-end of the system. We have completed designing the front-end and creating backend API endpoints of this application. The API endpoints have been collaboratively documented and tested using Postman. Examples for creating an escalation ladder and fetching active escalations are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alsinet, T., Ansótegui, C., Béjar, R., Fernández, C., Manyà, F.: Automated monitoring of medical protocols: a secure and distributed architecture. Artif. Intell. Med. 27, 367–392 (2003). https://doi.org/10.1016/s0933-3657(03)00010-1

    Article  Google Scholar 

  2. Barro, S., et al.: Intelligent telemonitoring of critical-care patients. IEEE Eng. Med. Biol. Mag. 18, 80–88 (1999). https://doi.org/10.1109/51.775492

    Article  Google Scholar 

  3. Bonzheim, K.A., et al.: Communication strategies and timeliness of response to life critical telemetry alarms. Telemed. J. E Health 17, 241–246 (2011). https://doi.org/10.1089/tmj.2010.0139

    Article  Google Scholar 

  4. Cvach, M.M., Frank, R.J., Doyle, P., Stevens, Z.K.: Use of pagers with an alarm escalation system to reduce cardiac monitor alarm signals. J. Nurs. Care Qual. 29, 9–18 (2014). https://doi.org/10.1097/NCQ.0b013e3182a61887

    Article  Google Scholar 

  5. Ellanti, P., Moriarty, A., Coughlan, F., McCarthy, T.:The Use of WhatsApp Smartphone Messaging Improves Communication Efficiency within an Orthopaedic Surgery Team. Cureus 9(2) (2017) https://doi.org/10.7759/cureus.1040

  6. Huhns, M.N., Singh, M.P.: Managing heterogeneous transaction workflows with co-operating agents. In: Jennings, N.R., Wooldridge, M.J. (eds.) Agent Technology: Foundations, Applications, and Markets, pp. 219–239. Springer, Berlin, Heidelberg (1998)

    Chapter  Google Scholar 

  7. Joseph, B., et al.: Improving communication in level 1 trauma centers: replacing pagers with smartphones. Telemed. e-Health 19, 150–154 (2013). https://doi.org/10.1089/tmj.2012.0114

    Article  Google Scholar 

  8. Joyce, G., Lilley, M., Barker, T., Jefferies, A.: Heuristic evaluation for mobile applications: extending a map of the literature. In: Ahram, T.Z., Falcão, C. (eds.) AHFE 2018. AISC, vol. 794, pp. 15–26. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-94947-5_2

    Chapter  Google Scholar 

  9. Lanzola, G., Gatti, L., Falasconi, S., Stefanelli, M.: A framework for building cooperative software agents in medical applications. Artif. Intell. Med. 16, 223–249 (1999). https://doi.org/10.1016/s0933-3657(99)00008-1

    Article  Google Scholar 

  10. Laranjo, L., et al.: Conversational agents in healthcare: a systematic review. J. Am. Med. Inform. Assoc. 25, 1248–1258 (2018). https://doi.org/10.1093/jamia/ocy072

    Article  Google Scholar 

  11. Larssan, J.E., Hayes-Roth, B.: Guardian: intelligent autonomous agent for medical monitoring and diagnosis. IEEE Intell. Syst. Appl. 13, 58–64 (1998). https://doi.org/10.1109/5254.653225

    Article  Google Scholar 

  12. de Lima Salgado, A., Freire, A.P.: Heuristic Evaluation of Mobile Usability: A Mapping Study. In: Kurosu, M. (ed.) HCI 2014. LNCS, vol. 8512, pp. 178–188. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07227-2_18

    Chapter  Google Scholar 

  13. de Lima Salgado, A., Rodrigues, S.S., Fortes, R.P.M.: Evolving Heuristic Evaluation for multiple contexts and audiences: Perspectives from a mapping study. In: Proceedings of the 34th ACM International Conference on the Design of Communication. Association for Computing Machinery, New York, NY, USA, pp. 1–8 (2016)

    Google Scholar 

  14. Marchetti, D., Lanzola, G., Stefanelli, M.: An ai-based approach to support communication in health care organizations. In: Quaglini, S., Barahona, P., Andreassen, S. (eds.) AIME 2001. LNCS (LNAI), vol. 2101, pp. 384–394. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-48229-6_52

    Chapter  MATH  Google Scholar 

  15. Mehrzad, R., Barza, M.: Are physician pagers an outmoded technology? Technol Health Care 23, 233–241 (2015). https://doi.org/10.3233/THC-140865

    Article  Google Scholar 

  16. Montenegro, J.L.Z., da Costa, C.A., da Rosa, R.R.: Survey of conversational agents in health. Expert Syst. Appl. 129, 56–67 (2019). https://doi.org/10.1016/j.eswa.2019.03.054

    Article  Google Scholar 

  17. Nealon, J., Moreno, A.: Agent-based applications in health care. In: Moreno A, Nealon JL (eds) Applications of Software Agent Technology in the Health Care Domain. Birkhäuser, Basel, pp. 3–18 (2003)

    Google Scholar 

  18. Nielsen, J.: Enhancing the explanatory power of usability heuristics. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Association for Computing Machinery, New York, NY, USA, pp. 152–158 (1994)

    Google Scholar 

  19. Nielsen, J., Mack, R.L.: Usability Inspection Methods. Wiley, Hoboken (1994)

    Book  Google Scholar 

  20. Nielsen, J., Molich, R.: Heuristic evaluation of user interfaces. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Association for Computing Machinery, New York, NY, USA, pp. 249–256 (1990)

    Google Scholar 

  21. Pourmand, A., Roberson, J., Gallugi, A., Sabha, Y., O’Connell, F.: Secure smartphone application-based text messaging in emergency department, a system implementation and review of literature. Am. J. Emerg. Med. 36, 1680–1685 (2018). https://doi.org/10.1016/j.ajem.2018.06.067

    Article  Google Scholar 

  22. Prochaska, M.T., Bird, A.-N., Chadaga, A., Arora, V.M.: Resident use of text messaging for patient care: ease of use or breach of privacy? JMIR Med. Inform. 3, e4797 (2015). https://doi.org/10.2196/medinform.4797

    Article  Google Scholar 

  23. Quaglini, S., Stefanelli, M., Cavallini, A., Micieli, G., Fassino, C., Mossa, C.: Guideline-based careflow systems. Artif. Intell. Med. 20, 5–22 (2000). https://doi.org/10.1016/S0933-3657(00)00050-6

    Article  Google Scholar 

  24. Sharp, H., Preece, J., Rogers, Y.: Interaction Design: Beyond Human-Computer Interaction. Wiley, Hoboken (2019)

    Google Scholar 

  25. Shieh, L., et al.: Smarter hospital communication: secure smartphone text messaging improves provider satisfaction and perception of efficacy, workflow. J. Hosp. Med. 9(9), 573–578 (2014). https://doi.org/10.1002/jhm.2228

    Article  Google Scholar 

  26. Susai J, Randazzo, M.: System and method for alert escalation processing in healthcare information systems

    Google Scholar 

  27. Tang, T., et al.: Using an electronic tool to improve teamwork and interprofessional communication to meet the needs of complex hospitalized patients: A mixed methods study. Int. J. Med. Inform. 127, 35–42 (2019). https://doi.org/10.1016/j.ijmedinf.2019.04.010

    Article  Google Scholar 

  28. Wharton, C., Rieman, J., Lewis, C., Polson, P.: The Cognitive Walkthrough Method: a Practitioner’s Guide. In: Usability inspection methods, pp. 105–140. John Wiley, USA (1994)

    Google Scholar 

  29. Wong, B.M., et al.: Frequency and clinical importance of pages sent to the wrong physician. Arch. Intern. Med. 169, 1072–1073 (2009). https://doi.org/10.1001/archinternmed.2009.117

    Article  Google Scholar 

  30. PagerDuty | Real-Time Operations | Incident Response | On-Call. In: PagerDuty. https://www.pagerduty.com/. Accessed 12 Feb 2021

  31. GraphQL | A query language for your API. https://graphql.org/. Accessed 13 Feb 2021

  32. Postman | The Collaboration Platform for API Development. In: Postman. https://www.postman.com/. Accessed 13 Feb 2021

  33. Node.js. https://nodejs.org/en/. Accessed 13 Feb 2021

Download references

Acknowledgements

This research has been funded by Mitacs Accelerate.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loutfouz Zaman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hossain, M.Y., Azhar, U., To, Y., Choi, J., Zaman, L. (2021). Automated Escalation and Incident Management in Healthcare During Mass Casualties and Pandemic Events. In: Duffy, V.G. (eds) Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. AI, Product and Service. HCII 2021. Lecture Notes in Computer Science(), vol 12778. Springer, Cham. https://doi.org/10.1007/978-3-030-77820-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77820-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77819-4

  • Online ISBN: 978-3-030-77820-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics