Abstract
We equip our algorithm LinCbO with a pruning technique similar to that of LCM. Our experimental evaluation shows that it significantly improves the performance of the algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The pruning is utilized in the implementation LCM2 (available at http://research.nii.ac.jp/~uno/codes.htm). However it is not described in the related paper. An interested reader can find the description of the LCM’s pruning in [9].
- 2.
For now, ignore the argument y and line 16 as it will be explained later.
- 3.
Available at https://github.com/yazevnul/fcai.
References
Andrews, S.: In-Close, a fast algorithm for computing formal concepts. In: International Conference on Conceptual Structures (ICCS), Moscow (2009)
Andrews, S.: Making use of empty intersections to improve the performance of CbO-type algorithms. In: Bertet, K., Borchmann, D., Cellier, P., Ferré, S. (eds.) ICFCA 2017. LNCS (LNAI), vol. 10308, pp. 56–71. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59271-8_4
Andrews, S.: A new method for inheriting canonicity test failures in close-by-one type algorithms (2018)
Bazhanov, K., Obiedkov, S.A.: Optimizations in computing the Duquenne-Guigues basis of implications. Ann. Math. Artif. Intell. 70(1–2), 5–24 (2014)
Beeri, C., Bernstein, P.A.: Computational problems related to the design of normal form relational schemas. ACM Trans. Database Syst. (TODS) 4(1), 30–59 (1979)
Dua, D., Graff, C.: UCI machine learning repository (2017)
Ganter, B., Wille, R.: Formal Concept Analysis - Mathematical Foundations. Springer, Heidelberg (1999)
Guigues, J.-L., Duquenne, V.: Familles minimales d’implications informatives resultant d’un tableau de données binaires. Math. Sci. Humaines 95, 5–18 (1986)
Janostik, R., Konecny, J., Krajča, P.: LCM is well implemented CbO: study of LCM from FCA point of view. CoRR, abs/2010.06980 (2020)
Janostik, R., Konecny, J., Krajča, P.: LinCbO: fast algorithm for computation of the Duquenne-Guigues basis. CoRR, abs/2011.04928 (2020)
Konecny, J., Krajča, P.: Pruning in map-reduce style CbO algorithms. In: Alam, M., Braun, T., Yun, B. (eds.) ICCS 2020. LNCS (LNAI), vol. 12277, pp. 103–116. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57855-8_8
Krajča, P., Outrata, J., Vychodil, V.: Advances in algorithms based on CbO. CLA 672, 325–337 (2010)
Krajča, P., Outrata, J., Vychodil, V.: Parallel algorithm for computing fixpoints of Galois connections. Ann. Math. Artif. Intell. 59(2), 257–272 (2010)
Krajca, P., Vychodil, V.: Distributed algorithm for computing formal concepts using map-reduce framework. In: Adams, N.M., Robardet, C., Siebes, A., Boulicaut, J.-F. (eds.) IDA 2009. LNCS, vol. 5772, pp. 333–344. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03915-7_29
Kuznetsov, S.O.: A fast algorithm for computing all intersections of objects from an arbitrary semilattice. Nauchno-Tekhnicheskaya Informatsiya Seriya 2-Informatsionnye Protsessy i Sistemy, (1), 17–20 (1993)
Kuznetsov, S.O.: On the intractability of computing the Duquenne-Guigues base. J. Univ. Comput. Sci. 10(8), 927–933 (2004)
Maier, D.: The Theory of Relational Databases, vol. 11. Computer Science Press, Rockville (1983)
Obiedkov, S.A., Duquenne, V.: Attribute-incremental construction of the canonical implication basis. .Ann. Math. Artif. Intell. 49(1–4), 77–99 (2007)
Outrata, J., Vychodil, V.: Fast algorithm for computing fixpoints of Galois connections induced by object-attribute relational data. Inf. Sci. 185(1), 114–127 (2012)
Uno, T., Asai, T., Uchida, Y., Hiroki A.: LCM: an efficient algorithm for enumerating frequent closed item sets. In: FIMI, vol. 90. Citeseer (2003)
Uno, T., Asai, T., Uchida, Y., Arimura, H.: An efficient algorithm for enumerating closed patterns in transaction databases. In: Suzuki, E., Arikawa, S. (eds.) DS 2004. LNCS (LNAI), vol. 3245, pp. 16–31. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30214-8_2
Uno, T., Kiyomi, M., Arimura, H.: LCM ver. 2: efficient mining algorithms for frequent/closed/maximal itemsets. In: FIMI, vol. 126 (2004)
Uno, T., Kiyomi, M., Arimura, H.: LCM ver. 3: collaboration of array, bitmap and prefix tree for frequent itemset mining. In: Proceedings of the 1st International Workshop on Open Source Data Mining: Frequent Pattern Mining Implementations, pp. 77–86. ACM (2005)
Wild, M.: Computations with finite closure systems and implications. In: Du, D.-Z., Li, M. (eds.) COCOON 1995. LNCS, vol. 959, pp. 111–120. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0030825
Acknowledgment
The authors acknowledge support by the grants
– IGA UP 2020 of Palacký University Olomouc, No. IGA_PrF_2020_019,
– JG 2019 of Palacký University Olomouc, No. JG_2019_008.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Janostik, R., Konecny, J., Krajča, P. (2021). Pruning Techniques in LinCbO for Computation of the Duquenne-Guigues Basis. In: Braud, A., Buzmakov, A., Hanika, T., Le Ber, F. (eds) Formal Concept Analysis. ICFCA 2021. Lecture Notes in Computer Science(), vol 12733. Springer, Cham. https://doi.org/10.1007/978-3-030-77867-5_6
Download citation
DOI: https://doi.org/10.1007/978-3-030-77867-5_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-77866-8
Online ISBN: 978-3-030-77867-5
eBook Packages: Computer ScienceComputer Science (R0)