Skip to main content

Approximate Computation of Exact Association Rules

  • Conference paper
  • First Online:
Formal Concept Analysis (ICFCA 2021)

Abstract

We adapt a polynomial-time approximation algorithm for computing the canonical basis of implications to approximately compute frequent implications, also known as exact association rules. To this end, we define a suitable notion of approximation that takes into account the frequency of attribute subsets and show that our algorithm achieves a desired approximation with high probability. We experimentally evaluate the proposed algorithm on several artificial and real-world data sets.

Supported by SPARC, a Government of India Initiative under grant no. SPARC/2018-2019/P682/SL.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, R., Imielinski, T., Swami, A.N.: Mining association rules between sets of items in large databases. In: Buneman, P., Jajodia, S. (eds.) Proceedings of the 1993 ACM SIGMOD International Conference on Management of Data, Washington, DC, pp. 207–216. ACM Press (1993). https://doi.org/10.1145/170035.170072

  2. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1988)

    MathSciNet  Google Scholar 

  3. Angluin, D., Frazier, M., Pitt, L.: Learning conjunctions of Horn clauses. Mach. Learn. 9, 147–164 (1992)

    MATH  Google Scholar 

  4. Arias, M., Balcázar, J.L.: Construction and learnability of canonical Horn formulas. Mach. Learn. 85(3), 273–297 (2011). https://doi.org/10.1007/s10994-011-5248-5

  5. Bazhanov, K., Obiedkov, S.: Optimizations in computing the Duquenne-Guigues basis of implications. Annal. Mathe. Artif. Intell. 70(1), 5–24 (2014)

    Article  MathSciNet  Google Scholar 

  6. Beeri, C., Bernstein, P.: Computational problems related to the design of normal form relational schemas. ACM TODS 4(1), 30–59 (1979)

    Article  Google Scholar 

  7. Boley, M., Lucchese, C., Paurat, D., Gärtner, T.: Direct local pattern sampling by efficient two-step random procedures. In: Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. p. 582–590. KDD’11, Association for Computing Machinery, New York, NY, USA (2011). https://doi.org/10.1145/2020408.2020500, https://doi.org/10.1145/2020408.2020500

  8. Borchmann, D., Hanika, T., Obiedkov, S.: On the usability of probably approximately correct implication bases. In: Bertet, K., Borchmann, D., Cellier, P., Ferré, S. (eds.) ICFCA 2017. LNCS (LNAI), vol. 10308, pp. 72–88. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59271-8_5

    Chapter  Google Scholar 

  9. Borchmann, D., Hanika, T., Obiedkov, S.: Probably approximately correct learning of Horn envelopes from queries. Discrete Appl. Math. 273, 30–42 (2020). https://doi.org/10.1016/j.dam.2019.02.036

    Article  MathSciNet  MATH  Google Scholar 

  10. Dua, D., Graff, C.: UCI Machine Learning Repository (2017)

    Google Scholar 

  11. Ganter, B.: Two basic algorithms in concept analysis. In: Kwuida, L., Sertkaya, B. (eds.) ICFCA 2010. LNCS (LNAI), vol. 5986, pp. 312–340. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-11928-6_22

    Chapter  MATH  Google Scholar 

  12. Ganter, B., Obiedkov, S.: More expressive variants of exploration. In: Obiedkov, S. (ed.) Conceptual Exploration, pp. 107–315. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49291-8

    Chapter  MATH  Google Scholar 

  13. Ganter, B., Wille, R.: Formal Concept Analysis: Mathematical Foundations. Springer, Berlin/Heidelberg (1999). https://doi.org/10.1007/978-3-642-59830-2

  14. Guigues, J.L., Duquenne, V.: Famille minimale d’implications informatives résultant d’un tableau de données binaires. Mathématiques et Sciences Humaines 24(95), 5–18 (1986)

    Google Scholar 

  15. Janostik, R., Konecny, J., Krajča, P.: LinCbO: fast algorithm for computation of the Duquenne-Guigues basis (2021). https://arxiv.org/abs/2011.04928

  16. Kautz, H.A., Kearns, M.J., Selman, B.: Horn approximations of empirical data. Artif. Intell. 74(1), 129–145 (1995)

    Article  MathSciNet  Google Scholar 

  17. Khardon, R.: Translating between Horn representations and their characteristic models. J. Artif. Intell. Res. (JAIR) 3, 349–372 (1995)

    Article  Google Scholar 

  18. Kuznetsov, S.: On the intractability of computing the Duquenne-Guigues base. J. Univ. Comput. Sci. 10(8), 927–933 (2004)

    MathSciNet  MATH  Google Scholar 

  19. Obiedkov, S., Duquenne, V.: Attribute-incremental construction of the canonical implication basis. Ann. Math. Artif. Intell. 49(1), 77–99 (2007)

    Article  MathSciNet  Google Scholar 

  20. Obiedkov, S.: Learning implications from data and from queries. In: Cristea, D., Le Ber, F., Sertkaya, B. (eds.) ICFCA 2019. LNCS (LNAI), vol. 11511, pp. 32–44. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-21462-3_3

    Chapter  Google Scholar 

  21. Yarullin, R., Obiedkov, S.: From equivalence queries to PAC learning: the case of implication theories. Int. J. Approx. Reason. 127, 1–16 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank Aimene Belfodil for letting us know of the paper [7].

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bansal, S., Kailasam, S., Obiedkov, S. (2021). Approximate Computation of Exact Association Rules. In: Braud, A., Buzmakov, A., Hanika, T., Le Ber, F. (eds) Formal Concept Analysis. ICFCA 2021. Lecture Notes in Computer Science(), vol 12733. Springer, Cham. https://doi.org/10.1007/978-3-030-77867-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77867-5_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77866-8

  • Online ISBN: 978-3-030-77867-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics