Skip to main content

Clustering and Identification of Core Implications

  • Conference paper
  • First Online:
Formal Concept Analysis (ICFCA 2021)

Abstract

FCA exhaustively uses the notion of cluster by grouping attributes and objects and providing a solid algebraic structure to them through the concept lattice. Our proposal explores how we can cluster implications. This work opens a research line to study the knowledge inside the clusters computed from the Duquenne-Guigues basis. Some alternative measures to induce the clusters are analysed, taking into account the information that directly appears in the appearance and the semantics of the implications. This work also allows us to show the fcaR package, which has the main methods of FCA and the Simplification Logic. The paper ends with a motivation of the potential applications of performing clustering on the implications.

Supported by Grants TIN2017-89023-P, UMA2018-FEDERJA-001 and PGC2018-095869-B-I00 of the Junta de Andalucia, and European Social Fund.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    As far as we know, no package using the R language has been developed and published in CRAN repository for FCA, even when the R language together with Python are considered the main languages in data science, machine learning, big data, etc. To this date, fcaR has more than 8,000 downloads.

  2. 2.

    In this work, we do not use all the methods in the fcaR package to manage the formal context, the concept lattice, the concepts, the implications, etc. See https://neuroimaginador.github.io/fcaR/ for more details.

  3. 3.

    See https://neuroimaginador.github.io/fcaR/articles/implications.html.

References

  1. Adaricheva, K., Nation, J., Rand, R.: Ordered direct implicational basis of a finite closure system. Discrete Appl. Math. 161(6), 707–723 (2013)

    Article  MathSciNet  Google Scholar 

  2. An, A., Khan, S., Huang, X.: Hierarchical grouping of association rules and its application to a real-world domain. Int. J. Syst. Sci. 37(13), 867–878 (2006)

    Article  Google Scholar 

  3. Belohlavek, R., De Baets, B., Outrata, J., Vychodil, V.: Computing the lattice of all fixpoints of a fuzzy closure operator. IEEE Trans. Fuzzy Syst. 18(3), 546–557 (2010)

    Article  Google Scholar 

  4. Bělohlávek, R., Vychodil, V.: Attribute implications in a fuzzy setting. In: Missaoui, R., Schmidt, J. (eds.) ICFCA 2006. LNCS (LNAI), vol. 3874, pp. 45–60. Springer, Heidelberg (2006). https://doi.org/10.1007/11671404_3

    Chapter  MATH  Google Scholar 

  5. Bocharov, A., Gnatyshak, D., Ignatov, D.I., Mirkin, B.G., Shestakov, A.: A lattice-based consensus clustering algorithm. In: International Conference on Concept Lattices and Their Applications, vol. CLA2016, pp. 45–56 (2016)

    Google Scholar 

  6. Carbonnel, J., Bertet, K., Huchard, M., Nebut, C.: FCA for software product line representation: mixing configuration and feature relationships in a unique canonical representation. Discrete Appl. Math. 273, 43–64 (2020)

    Article  MathSciNet  Google Scholar 

  7. Castellanos, A., Cigarrán, J., García-Serrano, A.: Formal concept analysis for topic detection: a clustering quality experimental analysis. Inf. Syst. 66, 24–42 (2017)

    Article  Google Scholar 

  8. Chemmalar Selvi, G., Lakshmi Priya, G.G., Joseph, R.B.: A FCA-based concept clustering recommender system. In: Vinh, P.C., Rakib, A. (eds.) ICCASA/ICTCC -2019. LNICST, vol. 298, pp. 178–187. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34365-1_14

    Chapter  Google Scholar 

  9. Cigarrán, J., Castellanos, Á., García-Serrano, A.: A step forward for Topic Detection in Twitter: an FCA-based approach. Expert Syst. Appl. 57, 21–36 (2016)

    Article  Google Scholar 

  10. Cordero, P., Enciso, M., Mora, A., de Guzmán, I.P.: SL\(_{\rm FD}\) logic: elimination of data redundancy in knowledge representation. In: Garijo, F.J., Riquelme, J.C., Toro, M. (eds.) IBERAMIA 2002. LNCS (LNAI), vol. 2527, pp. 141–150. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36131-6_15

    Chapter  MATH  Google Scholar 

  11. Cordero, P., Enciso, M., Bonilla, A.M., Ojeda-Aciego, M.: Bases via minimal generators. In: Proceedings of the International Workshop “What can FCA do for Artificial Intelligence?” (FCA4AI at IJCAI 2013), Beijing, China, 5 August 2013, pp. 33–36 (2013)

    Google Scholar 

  12. Cordero, P., Enciso, M., Mora, Á., Ojeda-Aciego, M.: Computing minimal generators from implications: a logic-guided approach. In: Proceedings of Concept Lattices and Applications, CLA 2012. pp. 187–198 (2012)

    Google Scholar 

  13. Demko, C., Bertet, K., Faucher, C., Viaud, J.F., Kuznetsov, S.O.: NextPriorityConcept: a new and generic algorithm computing concepts from complex and heterogeneous data. Theor. Comput. Sci. 845, 1–20 (2020)

    Article  MathSciNet  Google Scholar 

  14. Diatta, J.: A relation between the theory of formal concepts and multiway clustering. Pattern Recogn. Lett. 25(10), 1183–1189 (2004)

    Article  Google Scholar 

  15. Dua, D., Graff, C.: UCI machine learning repository (2017). http://archive.ics.uci.edu/ml

  16. Ganter, B., Wille, R.: Formal Concept Analysis. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-642-59830-2

    Book  MATH  Google Scholar 

  17. Delugach, H.S., Stumme, G. (eds.): ICCS-ConceptStruct 2001. LNCS (LNAI), vol. 2120. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44583-8

    Book  MATH  Google Scholar 

  18. Ganter, B., Rudolph, S., Stumme, G.: Explaining data with formal concept analysis. In: Krötzsch, M., Stepanova, D. (eds.) Reasoning Web. Explainable Artificial Intelligence. LNCS, vol. 11810, pp. 153–195. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31423-1_5

    Chapter  Google Scholar 

  19. Hahsler, M.: Grouping association rules using lift. In: Proceedings of 11th INFORMS Workshop on Data Mining and Decision Analytics (DMDA 2016) (2016)

    Google Scholar 

  20. Hamming, R.W.: Error detecting and error correcting codes. Bell Syst. Tech. J. 29(2), 147–160 (1950)

    Article  MathSciNet  Google Scholar 

  21. Jaccard, P.: The distribution of the flora in the alpine zone. New Phytol. 11(2), 37–50 (1912)

    Article  Google Scholar 

  22. Kashnitsky, Y., Ignatov, D.I.: Can FCA-based recommender system suggest a proper classifier? In: Proceedings of the International Workshop “What can FCA do for Artificial Intelligence?” (FCA4AI at IJCAI 2014), p. 17 (2014)

    Google Scholar 

  23. Kaufman, L., Rousseeuw, P.J.: Partitioning around medoids (program PAM). In: Finding Groups in Data: An Introduction to Cluster Analysis, vol. 344, pp. 68–125 (1990)

    Google Scholar 

  24. Konecny, J.: Attribute implications in L-concept analysis with positive and negative attributes: validity and properties of models. Int. J. Approx. Reason. 120, 203–215 (2020)

    Article  MathSciNet  Google Scholar 

  25. Kruskal, J.B.: Multidimensional Scaling, no. 11. Sage, Los Angeles (1978)

    Google Scholar 

  26. Kumar, C.A.: Fuzzy clustering-based formal concept analysis for association rules mining. Appl. Artif. Intell. 26(3), 274–301 (2012)

    Article  Google Scholar 

  27. MacQueen, J., et al.: Some methods for classification and analysis of multivariate observations. In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Oakland, CA, USA, vol. 1, pp. 281–297 (1967)

    Google Scholar 

  28. Medina, J., Ojeda-Aciego, M., Ruiz-Calviño, J.: Formal concept analysis via multi-adjoint concept lattices. Fuzzy Sets Syst. 160(2), 130–144 (2009)

    Article  MathSciNet  Google Scholar 

  29. Melo, C., Mikheev, A., Le Grand, B., Aufaure, M.A.: Cubix: a visual analytics tool for conceptual and semantic data. In: Proceedings - 12th IEEE International Conference on Data Mining Workshops, ICDMW 2012, pp. 894–897 (2012)

    Google Scholar 

  30. Missaoui, R., Ruas, P.H.B., Kwuida, L., Song, M.A.J.: Pattern discovery in triadic contexts. In: Alam, M., Braun, T., Yun, B. (eds.) ICCS 2020. LNCS (LNAI), vol. 12277, pp. 117–131. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57855-8_9

    Chapter  Google Scholar 

  31. Mora, Á., Cordero, P., Enciso, M., Fortes, I., Aguilera, G.: Closure via functional dependence simplification. Int. J. Comput. Math. 89(4), 510–526 (2012)

    Article  MathSciNet  Google Scholar 

  32. Priss, U.: Formal concept analysis in information science. Ann. Rev. Inf. Sci. Technol. 40(1), 521–543 (2006)

    Article  Google Scholar 

  33. Ravi, K., Ravi, V., Prasad, P.S.R.K.: Fuzzy formal concept analysis based opinion mining for CRM in financial services. Appl. Soft Comput. J. 60, 786–807 (2017)

    Article  Google Scholar 

  34. Rodríguez-Lorenzo, E., Bertet, K., Cordero, P., Enciso, M., Mora, A., Ojeda-Aciego, M.: From implicational systems to direct-optimal bases: a logic-based approach. Appl. Math. Inf. Sci. 2, 305–317 (2015)

    MathSciNet  Google Scholar 

  35. Rousseeuw, P.J.: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20, 53–65 (1987)

    Article  Google Scholar 

  36. Strehl, A., Gupta, G.K., Ghosh, J.: Distance based clustering of association rules. In: Proceedings ANNIE, vol. 9, pp. 759–764 (1999)

    Google Scholar 

  37. Stumme, G., Maedche, A.: FCA-MERGE: bottom-up merging of ontologies. In: IJCAI International Joint Conference on Artificial Intelligence, pp. 225–230 (2001)

    Google Scholar 

  38. Sumangali, K., Aswani Kumar, Ch.: Concept lattice simplification in formal concept analysis using attribute clustering. J. Ambient Intell. Humaniz. Comput. 10(6), 2327–2343 (2018). https://doi.org/10.1007/s12652-018-0831-2

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Domingo López-Rodríguez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

López-Rodríguez, D., Cordero, P., Enciso, M., Mora, Á. (2021). Clustering and Identification of Core Implications. In: Braud, A., Buzmakov, A., Hanika, T., Le Ber, F. (eds) Formal Concept Analysis. ICFCA 2021. Lecture Notes in Computer Science(), vol 12733. Springer, Cham. https://doi.org/10.1007/978-3-030-77867-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77867-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77866-8

  • Online ISBN: 978-3-030-77867-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics