Abstract
In this paper, bilevel stochastic programming problems with probabilistic and quantile criteria are considered. The lower level problem is assumed to be linear for fixed leader’s (upper level) variables and fixed realizations of the random parameters. The objective function and the constraints of the lower level problem depend on the leader’s strategy and random parameters. The objective function of the upper level problem is defined as the value of the probabilistic or quantile functional of the random losses on the upper level. We suggest conditions guaranteeing that the objective function of the upper level is a normal integrand. It is shown that these conditions are satisfied for a class of problems with positive coefficients of the lower level problem. This allows us to suggest sufficient conditions of the existence of a solution to the considered problem. We construct sample approximations of these problems. These approximations reduce to mixed integer nonlinear programming problems. We describe sufficient conditions of the convergence of the sample approximations to the original problems.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bard, J.F.: Practical Bilevel Optimization: Algorithms and Applications. Kluwer Academie Publishers, Dordrecht (1998)
Dempe, S.: Foundations of Bilevel Programming. Kluwer Academie Publishers, Dordrecht (2002)
Dempe, S., Kalashnikov, V., Pérez-Valdés, G.A., Kalashnykova, N.: Bilevel Programming Problems – Theory, Algorithms and Applications to Energy Network. Springer Verlag, Heidelberg (2015). https://doi.org/10.1007/978-3-662-45827-3
Dempe, S.: Bilevel optimization: theory, algorithms, applications and a bibliography. In: Dempe, S., Zemkoho, A. (eds.) Bilevel Optimization. SOIA, vol. 161, pp. 581–672. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52119-6_20
Kibzun, A.I., Kan, Y.S.: Stochastic Programming Problems with Probability and Quantile Functions. John Wiley & Sons, Chichester (1996)
Sakawa, M., Katagiri, H., Matsui, T.: Stackelberg solutions for fuzzy random bilevel linear programming through level sets and probability maximization. Oper. Res. Int. J. 12(3), 271–286 (2012). https://doi.org/10.1007/s12351-010-0090-2
Dempe, S., Ivanov, S., Naumov, A.: Reduction of the bilevel stochastic optimization problem with quantile objective function to a mixed-integer problem. Appl. Stoch. Models Bus. Ind. 33(5), 544–554 (2017). https://doi.org/10.1002/asmb.2254
Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Modeling and Theory (2014)
Burtscheidt, J., Claus, M., Dempe, S.: Risk-Averse models in bilevel stochastic linear programming. SIAM J. Optim. 30(1), 377–406 (2020). https://doi.org/10.1137/19M1242240
Burtscheidt, J., Claus, M.: Bilevel linear optimization under uncertainty. In: Dempe, S., Zemkoho, A. (eds.) Bilevel Optimization. SOIA, vol. 161, pp. 485–511. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52119-6_17
Artstein, Z., Wets, R.J.-B.: Consistency of minimizers and the SLLN for stochastic programs. J. Convex Anal. 2, 1–17 (1996)
Pagnoncelli, B.K., Ahmed, S., Shapiro, A.: Sample average approximation method for chance constrained programming: theory and applications. J. Optim. Theory Appl. 142, 399–416 (2009). https://doi.org/10.1007/s10957-009-9523-6
Ivanov, S.V., Kibzun, A.I.: On the convergence of sample approximations for stochastic programming problems with probabilistic criteria. Autom. Remote Control 79(2), 216–228 (2018). https://doi.org/10.1134/S0005117918020029
Ivanov, S.V., Kibzun, A.I.: General properties of two-stage stochastic programming problems with probabilistic criteria. Autom. Remote Control 80(6), 1041—1057 (2019). https://doi.org/10.1134/S0005117919060043
Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02431-3
Norkin, V.I., Kibzun, A.I., Naumov, A.V.: Reducing two-stage probabilistic optimization problems with discrete distribution of random data to mixed-integer programming problems \(^{*}\). Cybern. Syst. Anal. 50(5), 679–692 (2014). https://doi.org/10.1007/s10559-014-9658-9
Kibzun, A.I., Naumov, A.V., Norkin, V.I.: On reducing a quantile optimization problem with discrete distribution to a mixed integer programming problem. Autom. Remote Control 74(6), 951–967 (2013). https://doi.org/10.1134/S0005117913060064
Ivanov, S.V., Zhenevskaya, I.D.: Estimation of the necessary sample size for approximation of stochastic optimization problems with probabilistic criteria. In: Khachay, M., Kochetov, Y., Pardalos, P. (eds.) MOTOR 2019. LNCS, vol. 11548, pp. 552–564. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22629-9_39
Ivanov, S.V.: A bilevel stochastic programming problem with random parameters in the follower’s objective function. J. Appl. Ind. Math. 12(4), 658–667 (2018). https://doi.org/10.1134/S1990478918040063
Acknowledgements
The reported study was funded by Russian Foundation for Basic Research (RFBR) according to the research project № 20-37-70022.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Ivanov, S.V., Ignatov, A.N. (2021). Sample Approximations of Bilevel Stochastic Programming Problems with Probabilistic and Quantile Criteria. In: Pardalos, P., Khachay, M., Kazakov, A. (eds) Mathematical Optimization Theory and Operations Research. MOTOR 2021. Lecture Notes in Computer Science(), vol 12755. Springer, Cham. https://doi.org/10.1007/978-3-030-77876-7_15
Download citation
DOI: https://doi.org/10.1007/978-3-030-77876-7_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-77875-0
Online ISBN: 978-3-030-77876-7
eBook Packages: Computer ScienceComputer Science (R0)