Skip to main content

Sample Approximations of Bilevel Stochastic Programming Problems with Probabilistic and Quantile Criteria

  • Conference paper
  • First Online:
Mathematical Optimization Theory and Operations Research (MOTOR 2021)

Abstract

In this paper, bilevel stochastic programming problems with probabilistic and quantile criteria are considered. The lower level problem is assumed to be linear for fixed leader’s (upper level) variables and fixed realizations of the random parameters. The objective function and the constraints of the lower level problem depend on the leader’s strategy and random parameters. The objective function of the upper level problem is defined as the value of the probabilistic or quantile functional of the random losses on the upper level. We suggest conditions guaranteeing that the objective function of the upper level is a normal integrand. It is shown that these conditions are satisfied for a class of problems with positive coefficients of the lower level problem. This allows us to suggest sufficient conditions of the existence of a solution to the considered problem. We construct sample approximations of these problems. These approximations reduce to mixed integer nonlinear programming problems. We describe sufficient conditions of the convergence of the sample approximations to the original problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bard, J.F.: Practical Bilevel Optimization: Algorithms and Applications. Kluwer Academie Publishers, Dordrecht (1998)

    Book  Google Scholar 

  2. Dempe, S.: Foundations of Bilevel Programming. Kluwer Academie Publishers, Dordrecht (2002)

    MATH  Google Scholar 

  3. Dempe, S., Kalashnikov, V., Pérez-Valdés, G.A., Kalashnykova, N.: Bilevel Programming Problems – Theory, Algorithms and Applications to Energy Network. Springer Verlag, Heidelberg (2015). https://doi.org/10.1007/978-3-662-45827-3

    Book  MATH  Google Scholar 

  4. Dempe, S.: Bilevel optimization: theory, algorithms, applications and a bibliography. In: Dempe, S., Zemkoho, A. (eds.) Bilevel Optimization. SOIA, vol. 161, pp. 581–672. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52119-6_20

    Chapter  Google Scholar 

  5. Kibzun, A.I., Kan, Y.S.: Stochastic Programming Problems with Probability and Quantile Functions. John Wiley & Sons, Chichester (1996)

    MATH  Google Scholar 

  6. Sakawa, M., Katagiri, H., Matsui, T.: Stackelberg solutions for fuzzy random bilevel linear programming through level sets and probability maximization. Oper. Res. Int. J. 12(3), 271–286 (2012). https://doi.org/10.1007/s12351-010-0090-2

    Article  MATH  Google Scholar 

  7. Dempe, S., Ivanov, S., Naumov, A.: Reduction of the bilevel stochastic optimization problem with quantile objective function to a mixed-integer problem. Appl. Stoch. Models Bus. Ind. 33(5), 544–554 (2017). https://doi.org/10.1002/asmb.2254

    Article  MathSciNet  MATH  Google Scholar 

  8. Shapiro, A., Dentcheva, D., Ruszczyński, A.: Lectures on Stochastic Programming. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, Modeling and Theory (2014)

    Google Scholar 

  9. Burtscheidt, J., Claus, M., Dempe, S.: Risk-Averse models in bilevel stochastic linear programming. SIAM J. Optim. 30(1), 377–406 (2020). https://doi.org/10.1137/19M1242240

    Article  MathSciNet  MATH  Google Scholar 

  10. Burtscheidt, J., Claus, M.: Bilevel linear optimization under uncertainty. In: Dempe, S., Zemkoho, A. (eds.) Bilevel Optimization. SOIA, vol. 161, pp. 485–511. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52119-6_17

    Chapter  Google Scholar 

  11. Artstein, Z., Wets, R.J.-B.: Consistency of minimizers and the SLLN for stochastic programs. J. Convex Anal. 2, 1–17 (1996)

    MathSciNet  MATH  Google Scholar 

  12. Pagnoncelli, B.K., Ahmed, S., Shapiro, A.: Sample average approximation method for chance constrained programming: theory and applications. J. Optim. Theory Appl. 142, 399–416 (2009). https://doi.org/10.1007/s10957-009-9523-6

  13. Ivanov, S.V., Kibzun, A.I.: On the convergence of sample approximations for stochastic programming problems with probabilistic criteria. Autom. Remote Control 79(2), 216–228 (2018). https://doi.org/10.1134/S0005117918020029

    Article  MathSciNet  MATH  Google Scholar 

  14. Ivanov, S.V., Kibzun, A.I.: General properties of two-stage stochastic programming problems with probabilistic criteria. Autom. Remote Control 80(6), 1041—1057 (2019). https://doi.org/10.1134/S0005117919060043

  15. Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02431-3

  16. Norkin, V.I., Kibzun, A.I., Naumov, A.V.: Reducing two-stage probabilistic optimization problems with discrete distribution of random data to mixed-integer programming problems \(^{*}\). Cybern. Syst. Anal. 50(5), 679–692 (2014). https://doi.org/10.1007/s10559-014-9658-9

    Article  MathSciNet  MATH  Google Scholar 

  17. Kibzun, A.I., Naumov, A.V., Norkin, V.I.: On reducing a quantile optimization problem with discrete distribution to a mixed integer programming problem. Autom. Remote Control 74(6), 951–967 (2013). https://doi.org/10.1134/S0005117913060064

    Article  MathSciNet  MATH  Google Scholar 

  18. Ivanov, S.V., Zhenevskaya, I.D.: Estimation of the necessary sample size for approximation of stochastic optimization problems with probabilistic criteria. In: Khachay, M., Kochetov, Y., Pardalos, P. (eds.) MOTOR 2019. LNCS, vol. 11548, pp. 552–564. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22629-9_39

    Chapter  MATH  Google Scholar 

  19. Ivanov, S.V.: A bilevel stochastic programming problem with random parameters in the follower’s objective function. J. Appl. Ind. Math. 12(4), 658–667 (2018). https://doi.org/10.1134/S1990478918040063

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The reported study was funded by Russian Foundation for Basic Research (RFBR) according to the research project № 20-37-70022.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ivanov, S.V., Ignatov, A.N. (2021). Sample Approximations of Bilevel Stochastic Programming Problems with Probabilistic and Quantile Criteria. In: Pardalos, P., Khachay, M., Kazakov, A. (eds) Mathematical Optimization Theory and Operations Research. MOTOR 2021. Lecture Notes in Computer Science(), vol 12755. Springer, Cham. https://doi.org/10.1007/978-3-030-77876-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77876-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77875-0

  • Online ISBN: 978-3-030-77876-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics