Skip to main content

Human-Centered HMI for Crane Teleoperation: Intuitive Concepts Based on Mental Models, Compatibility and Mental Workload

  • Conference paper
  • First Online:
Engineering Psychology and Cognitive Ergonomics (HCII 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12767))

Included in the following conference series:

Abstract

Current crane controls result from a machine-centered design process and rely heavily on the operator, as he/she has to perform continuous mental transformations to assess the correct control inputs for all joints, causing considerable mental workload. To facilitate the development of intuitive HMIs, a design framework for human-centered remote crane controls is presented. The framework allows comparison of the traditional machine-centered HMI with other, new HMIs in respect of important design principles. It focusses on supporting the operator in achieving his/her primary goal: moving the load. The framework is used to analyze two new human-centered HMIs for a loader crane, the direction-oriented and the target-oriented HMI. Based on the compatible task/action mappings of the direction-oriented HMI, it is predicted that the HMI facilitates interactions even for operators with minimal prior experience. A mental workload reduction is also expected for the target-oriented HMI as it combines task/action mappings with an increase in automation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Deutsches Institu für Normung e.V.: Cranes; Vocabulary, classification according to type. DIN 15001-1, Berlin (1973)

    Google Scholar 

  2. Shapira, A., Lucko, G., Schexnayder, C.: Cranes for building construction projects. J. Constr. Eng. Manage. 133(9), 690–700 (2007)

    Article  Google Scholar 

  3. Miadlicki, K., Pajor, M.: Overview of user interfaces used in load lifting devices. Int. J. Sci. Eng. Res. 6(9), 1215–1220 (2015)

    Google Scholar 

  4. Fang, Y., Cho, Y.K., Durso, F., Seo, J.: Assessment of operator’s situation awareness for smart operation of mobile cranes. Autom. Constr. 85, 65–75 (2018). https://doi.org/10.1016/j.autcon.2017.10.007

    Article  Google Scholar 

  5. Löfgren, B.: Kinematic control of redundant knuckle booms with automatic path-following functions. Dissertation. Royal Institute of Technology, Stockholm (2009)

    Google Scholar 

  6. Manner, J., Gelin, O., Mörk, A., Englund, M.: Forwarder crane’s boom tip control system and beginner-level operators. Silva Fennica 51(2), 1717 (2017). https://doi.org/10.14214/sf.1717

    Article  Google Scholar 

  7. Peng, K.: Interfaces and control systems for intuitive crane control. Master’s thesis. Atlanta: Georgia Institute of Technology (2009)

    Google Scholar 

  8. Peng, K., Singhose, W.: Crane control using machine vision and wand following. In: 2009 IEEE International Conference on Mechatronics. IEEE Institute of Electrical and Electronics Engineers. IEEE, Piscataway (2009). http://ieeexplore.ieee.org/servlet/opac?punumber=4914928

  9. Kazerooni, H., Fairbanks, D., Chen, A., Shin, G.: The magic glove. In: 2004 IEEE International Conference on Robotics and Automation. IEEE Institute of Electrical and Electronics Engineers, pp. 757–763. IEEE, Piscataway (2004)

    Google Scholar 

  10. Chi, H.-L., Chen, Y.-C., Kang, S.-C., Hsieh, S.-H.: Development of user interface for tele-operated cranes. Adv. Eng. Inf. 26(3), 641–652 (2012). https://doi.org/10.1016/j.aei.2012.05.001

    Article  Google Scholar 

  11. DeJong, B.P., Colgate, J.E., Peshkin, M.A.: Improving teleoperation: reducing mental rotations and translations. In: 2004 IEEE International Conference on Robotics and Automation. IEEE Institute of Electrical and Electronics Engineers, pp. 3708–3714. IEEE, Piscataway (2004). https://doi.org/10.1109/ROBOT.2004.1308838

  12. Kivila, A., Singhose, W.: The effect of operator orientation in crane control. In: Berg, J.M. (ed.) 2014 Proceedings of the ASME 7th Annual Dynamic Systems and Control Conference, pp. 1–7. ASME, New York (2014)

    Google Scholar 

  13. Norman, D.A.: The Design of Everyday Things. Basic Books, New York (2013).Revised and expanded

    Google Scholar 

  14. Mohs, C., et al.: IUUI – intuitive use of user interfaces. In: Usability Professionals 2006, pp. 130–133 (2006)

    Google Scholar 

  15. Blackler, A., Hurtienne, J.: Towards a unified view of intuitive interaction: definitions, models and tools across the world. MMI Interak. 13, 36–54 (2007)

    Google Scholar 

  16. Blackler, A., Popovic, V., Mahar, D.: Investigating users’ intuitive interaction with complex artefacts. Appl. Ergon. 41(1), 72–92 (2010). https://doi.org/10.1016/j.apergo.2009.04.010

    Article  Google Scholar 

  17. Naumann, A., et al.: Intuitive use of user interfaces: defining a vague concept. In: Harris, D. (ed.) EPCE 2007. LNCS (LNAI), vol. 4562, pp. 128–136. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73331-7_14

    Chapter  Google Scholar 

  18. Rasmussen, J.: Skills, rules, and knowledge; signals, signs, and symbols, and other distinctions in human performance models. IEEE Trans. Syst. Man Cybern. SMC 13(3), 257–266 (1983). https://doi.org/10.1109/TSMC.1983.6313160

    Article  Google Scholar 

  19. Blackler, A., Popovic, V., Mahar, D.: Designing for intuitive use of products. In: Harada, A. (ed.) 6th Asian Design Conference on Journal of the Asian Design International Conference Tsukuba, pp. 1–16 (2003)

    Google Scholar 

  20. Vandenbosch, B., Higgins, C.: Information acquisition and mental models: an investigation into the relationship between behaviour and learning. Inf. Syst. Res. 7(2), 198–214 (1996). https://doi.org/10.1287/isre.7.2.198

    Article  Google Scholar 

  21. Carroll, J.M., Olson, J.R.: Mental Models in Human Computer Interaction. National Academy Press, Washington (1987)

    Google Scholar 

  22. Greca, I.M., Moreira, M.A.: Mental models, conceptual models, and modelling. Int. J. Sci. Educ. 22(1), 1–11 (2000). https://doi.org/10.1080/095006900289976

    Article  Google Scholar 

  23. Deutsches Institut für Normung e.V.: Ergonomic principles related to mental workload - Part 2: Design principles. DIN EN ISO 10075-2. Berlin (2000)

    Google Scholar 

  24. Kieras, D.E., Bovair, S.: The role of a mental model in learning to operate a device. Cogn. Sci. 8, 255–273 (1984)

    Article  Google Scholar 

  25. Norman, D.A.: Design rules based on analyses of human error. Commun. ACM 26(4), 254–258 (1983)

    Article  Google Scholar 

  26. Young, R.M.: Surrogates and mappings: two kinds of conceptual models for interactive devices. In: Gentner, D., Stevens, A.L. (eds.) Mental Models. Cognitive science. Psychology Press, New York and London (2014)

    Google Scholar 

  27. Rasmussen, J.: Mental models and the control of action in complex environments. IEEE Trans. Syst. Man Cybern. 13(3), 257–266 (1983)

    Article  Google Scholar 

  28. Schmidtke, H., Bernotat, R. (eds.): Ergonomie. 3., neubearb. und erw. Aufl. Hanser, München (1993)

    Google Scholar 

  29. Fitts, P.M., Seeger, C.M.: S-R compatibility: spatial characteristics of stimulus and response codes. J. Exp. Psychol. 46(3), 199–210 (1953)

    Article  Google Scholar 

  30. Fitts, P.M., Deininger, R.L.: S-R compatibility: correspondence among paired elements within stimulus and response coudes. J. Exp. Psychol. 48(6), 483–492 (1954)

    Article  Google Scholar 

  31. Kornblum, S., Hasbroucq, T., Osman, A.: Dimensional overlap: cognitive basis for stimulus-response compatibility - a model and taxonomy. Psychol. Rev. 97(2), 253–270 (1990)

    Article  Google Scholar 

  32. Proctor, R.W. (ed.): Stimulus Response Compatibility: An Integrated Perspective. Advances in Psychology, vol. 65. North Holland, Amsterdam (1990)

    Google Scholar 

  33. Proctor, R.W., Wang, H.: Differentiating types of set-level compatibility. In: Hommel, B., Prinz, W. (eds.) Theoretical Issues in Stimulus-response Compatibility. Advances in Psychology, pp. 11–37. Elsevier, Amsterdam and New York (1997)

    Google Scholar 

  34. Shin, Y.K., Proctor, R.W., Capaldi, E.J.: A review of contemporary ideomotor theory. Psychol. Bull. 136(6), 943–974 (2010). https://doi.org/10.1037/a0020541

    Article  Google Scholar 

  35. Kunde, W.: Response-effect compatibility in manual choice reaction tasks. J. Exp. Psychol. 27(2), 387–394 (2001)

    Google Scholar 

  36. Földes, N., Philipp, A.M., Badets, A., Koch, I.: Exploring modality compatibility in the response-effect compatibility paradigm. Adv. Cogn. Psychol. 13(1), 97–104 (2017). https://doi.org/10.5709/acp-0210-1

    Article  Google Scholar 

  37. Worringham, C.J., Beringer, D.B.: Directional stimulus-response compatibility: a test of three alternative principles. Ergonomics 41(6), 864–880 (1998). https://doi.org/10.1080/001401398186694

    Article  Google Scholar 

  38. Endsley, M.R., Kaber, D.B.: Level of automation effects on performance, situation awareness and workload in a dynamic control task. Ergonomics 42(3), 462–492 (1999). https://doi.org/10.1080/001401399185595

    Article  Google Scholar 

  39. Wickens, C.D., Hollands, J.G.: Engineering psychology and human performance, 3rd edn. Prentice-Hall, Upper Saddle River (2000)

    Google Scholar 

  40. Bainbridge, L.: Forgotten alternatives in skill and work-load. Ergonomics 21(3), 169–185 (1978). https://doi.org/10.1080/00140137808931711

    Article  Google Scholar 

  41. Bainbridge, L.: Ironies of automation. Automatica 19(6), 775–779 (1983)

    Article  Google Scholar 

  42. Young, M.S., Brookhuis, K.A., Wickens, C.D., Hancock, P.A.: State of science: mental workload in ergonomics. Ergonomics 58(1), 1–17 (2015). https://doi.org/10.1080/00140139.2014.956151

    Article  Google Scholar 

  43. Billings, C.E.: Aviation Automation: The Search for a Human-Centered Approach. Human Factors in Transportation, Lawrence Erlbaum Associates Publishers, Mahwah (1997)

    Google Scholar 

  44. Fottner, J., Bengler, K., Top, F., Prasch, L.: Entwicklung eines intuitiven Steuerungskonzepts für Lasthebemaschinen: Forschungsbericht. Technische Universität München, München (2020)

    Google Scholar 

  45. Top, F., Wagner, M., Fottner, J.: How to increase crane control usability: an intuitive hmi for remotely operated cranes in industry and construction. In: Karwowski, W., Ahram, T. (eds.) IHSI 2019. AISC, vol. 903, pp. 293–299. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11051-2_45

    Chapter  Google Scholar 

  46. Loveless, N.E.: Direction-of-motion stereotypes: a review. Ergonomics 5, 357–383 (1962). https://doi.org/10.1080/00140136208930601

    Article  Google Scholar 

  47. Top, F., Krottenthaler, J., Fottner, J.: Evaluation of remote crane operation with an intuitive tablet interface and boom tip control. In: IEEE International Conference on Systems, Man and Cybernetics (SMC). Conference Proceedings. IEEE Institute of Electrical and Electronics Engineers, Piscataway, NJ (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Felix Top .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Top, F., Pütz, S., Fottner, J. (2021). Human-Centered HMI for Crane Teleoperation: Intuitive Concepts Based on Mental Models, Compatibility and Mental Workload. In: Harris, D., Li, WC. (eds) Engineering Psychology and Cognitive Ergonomics. HCII 2021. Lecture Notes in Computer Science(), vol 12767. Springer, Cham. https://doi.org/10.1007/978-3-030-77932-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77932-0_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77931-3

  • Online ISBN: 978-3-030-77932-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics