Skip to main content

An Improved Washout Algorithm for UPRT Scenario

  • Conference paper
  • First Online:
Engineering Psychology and Cognitive Ergonomics (HCII 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12767))

Included in the following conference series:

  • 1295 Accesses

Abstract

In recent years, with the continuous upgrading of technology, flight accidents caused by aircraft failures have been greatly reduced. It has become the most important cause of major aviation accidents that pilots operate aircraft into complex state and fail to recover. It is very important to train pilots with UPRT, so it is urgent to improve the UPRT performance of existing flight simulators. This paper proposes an improved washout algorithm for UPRT scenario. The key point of the algorithm is to combine the advantages of the washout algorithm based on model predictive control and the classical washout algorithm. The washout algorithm based on model predictive control (MPC washout algorithm) can simulate large amplitude and low frequency motion better, and has greater space utilization, while the classical washout algorithm is efficient and simple, and has better simulation effect for small amplitude and high frequency motion. By setting the exponential weighted fusion algorithm to fuse the output of the two algorithms, it can have better dynamic simulation effect in large and small motion, and is more suitable for UPRT scenario. In addition, it also saves the time of designing and debugging algorithms or parameters separately for different missions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boeing, Statistical Summary of Commercial Jet Airplane Accidents Worldwide Operations, 1959–2017

    Google Scholar 

  2. Rosenkrans, W.: Brave new world: FAA simulator requirements enable acceptably realistic recoveries from full stalls and upsets in commercial jets. AeoSafety World, July-August 2016

    Google Scholar 

  3. Chang, Y.-H., Liao, C.-S., Chieng, W.-H.: Optimal motion cueing for 5-DOF motion simulations via a 3-DOF motion simulator. Control Eng. Pract. 17(1), 170–184 (2009)

    Article  Google Scholar 

  4. Aminzadeh, M., Mahmoodi, A., Sabzehparvar, M.: Optimal motion cueing algorithm using motion system kinematics. Eur. J. Control 18(4), 363–375 (2012)

    Article  MathSciNet  Google Scholar 

  5. Lee, W.-S., Kim, J.-H., Cho, J.-H.: A driving simulator as a virtual reality tool. In: Proceedings of the 1998 IEEE International Conference on Robotics and Automation, vol. 1, pp. 71–76. IEEE (1998)

    Google Scholar 

  6. Telban, R.J., Cardullo, F.M.: Motion cueing algorithm development: human-centered linear and nonlinear approaches. Technical report, NASA/CR-2005–213747 (2005)

    Google Scholar 

  7. Asadi, H., Mohamed, S., Lim, C.P., Nahavandi, S., Nalivaiko, E.: Semicircular canal modeling in human perception. Rev. Neurosci. 28(5), 537–549 (2017)

    Article  Google Scholar 

  8. Asadi, H., Mohamed, S., Lim, C.P., Nahavandi, S.: A review on otolith models in human perception. Behav. Brain Res. 309, 67–76 (2016)

    Article  Google Scholar 

  9. Conrad, B., Schmidt, S.F.: A study of techniques for calculating motion drive signals for flight simulators. NASA CR-114345 (1971)

    Google Scholar 

  10. Conrad, B., Schmidt, S., Douvillier, J.: Washout circuit design for multi-degrees of freedom moving base simulators. In: Proceedings of the AiAA Visual and Motion Simulation Conference, Palo Alto (CA), 10 September 1973, vol. 12 (1973)

    Google Scholar 

  11. Reid, L., Nahon, M.A.: Flight simulation motion-base drive algorithms: part 1. Developing and testing equations. University of Toronto, Technical report (1985)

    Google Scholar 

  12. Reid, L., Nahon, M.A.: Flight Flight simulation motion-base drive algorithms: part 2. Selecting the system parameters. University of Toronto, Technical report (1986)

    Google Scholar 

  13. Reid, L., Nahon, M.: Flight simulation motion-base drive algorithms. Part 3: Pilot evaluations (1986)

    Google Scholar 

  14. Parrish, R.V., Dieudonne, J.E., Martin Jr., D.J.: Coordinated adaptive washout for motion simulators. J. Aircr. 12(1), 44–50 (1975)

    Article  Google Scholar 

  15. Sivan, R., Ish-Shalom, J., Huang, J.-K.: An optimal control approach to the design of moving flflight simulators. IEEE Trans. Syst. Man Cybern. 12(6), 818–827 (1982)

    Article  Google Scholar 

  16. Song, J.-B., Jung, U.-J., Ko, H.-D.: Washout algorithm with fuzzy-based tuning for a motion simulator. KSME Int. J. 17(2), 221–229 (2003)

    Article  Google Scholar 

  17. Asadi, H., Mohammadi, A., Mohamed, S., Nahavandi, S.: Adaptive translational cueing motion algorithm using fuzzy based tilt coordination. In: Loo, C.K., Yap, K.S., Wong, K.W., Beng Jin, A.T., Huang, K. (eds.) ICONIP 2014. LNCS, vol. 8836, pp. 474–482. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12643-2_58

    Chapter  Google Scholar 

  18. Asadi, H., Mohammadi, A., Mohamed, S., Rahim Zadeh, D., Nahavandi, S.: Adaptive washout algorithm based fuzzy tuning for improving human perception. In: Loo, C.K., Yap, K.S., Wong, K.W., Beng Jin, A.T., Huang, K. (eds.) ICONIP 2014. LNCS, vol. 8836, pp. 483–492. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-12643-2_59

    Chapter  Google Scholar 

  19. Dagdelen, M., Reymond, G., Kemeny, A., Bordier, M., Maizi, N.: Model-based predictive motion cueing strategy for vehicle driv-ing simulators. Control Eng. Pract. 17(19), 995–1003 (2009)

    Article  Google Scholar 

  20. Garrett, N.J.I., Best, M.C.: Model predictive driving simulator motion cueing algorithm with actuator-based constraints. Veh Syst Dyn 51(8), 1151–1172 (2013). https://doi.org/10.1080/00423114.2013.783219

    Article  Google Scholar 

  21. Mohammadi, A., Asadi, H., Mohamed, S., Nelson, K., Nahavandi, S.: MPC-based motion cueing algorithm with short prediction hori-zon using exponential weighting. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE (2016)

    Google Scholar 

  22. Salisbury, I.G., Limebeer, D.J.: Optimal motion cueing for race cars. IEEE Trans. Control Syst. Technol. 24(1), 200–215 (2016)

    Article  Google Scholar 

  23. Mohammadi, A., Asadi, H., Mohamed, S., Nelson, K., Nahavandi, S.: Multiobjective and interactive genetic algorithms for weight tuning of a model predictive control-based motion cueing algorithm. IEEE Trans. Cybern. 49(9), 3471–3481 (2018)

    Article  Google Scholar 

  24. Qazani, M.R.C., Asadi, H., Khoo, S., Nahavandi, S.: A linear time-varying model predictive control-based motion cueing algorithm for hexapod simulation-based motion platform. IEEE Trans. Syst. Man Cybern.: Syst. (2019)

    Google Scholar 

  25. Pool, D.M., Zaal, P.M.T., Damveld, H., van Paassen, M. M., Mulder, M.: Evaluating simulator motion fidelity using in-flight and simulator measurements of roll tracking behavior. In: AIAA Modeling and Simulation Technologies Conference, August 2012

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shan Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, W., Wang, Z., Fu, S. (2021). An Improved Washout Algorithm for UPRT Scenario. In: Harris, D., Li, WC. (eds) Engineering Psychology and Cognitive Ergonomics. HCII 2021. Lecture Notes in Computer Science(), vol 12767. Springer, Cham. https://doi.org/10.1007/978-3-030-77932-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77932-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77931-3

  • Online ISBN: 978-3-030-77932-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics