Skip to main content

Reactive Obstacle Avoidance Method for a UAV

  • Chapter
  • First Online:
Deep Learning for Unmanned Systems

Part of the book series: Studies in Computational Intelligence ((SCI,volume 984))

  • 1665 Accesses

Abstract

Obstacle avoidance is very important for UAV flying in unknown environment. In this paper, the UAV’s obstacle avoidance method in unknown environment is proposed from two different view combined with the forward looking perception information of UAV. One is to propose a local real-time planning method from the perspective of optimization. The other is to combined with reinforcement learning to propose a method of avoiding action selection. In this paper, simulation experiments and comparative experiments are carried out to prove the effectiveness of the method.

This work was supported by National Nature Science Foundation (NNSF) of China under Grant 61876187.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nonami K, Kendoul F, Suzuki S et al (2010) Autonomous flying robots: unmanned aerial vehicles and micro aerial vehicles. Springer Science & Business Media

    Google Scholar 

  2. Usenko V, von Stumberg L, Pangercic A et al (2017) Real-time trajectory replanning for MAVs using uniform B-splines and a 3D circular buffer. IEEE/RSJ Int Conf Intell Robots Syst (IROS) 2017:215–222

    Google Scholar 

  3. Nießner M, Zollhöfer M, Izadi S et al (2013) Real-time 3D reconstruction at scale using voxel hashing. ACM Trans Graph (ToG) 32(6):1–11

    Article  Google Scholar 

  4. Oleynikova H et al (2016) Voxblox: Building 3D signed distance fields for planning. arXiv-1611

    Google Scholar 

  5. Oleynikova H et al (2018) Safe local exploration for replanning in cluttered unknown environments for microaerial vehicles. IEEE Robot Autom Lett:1474–1481

    Google Scholar 

  6. Hornung A, Wurm KM, Bennewitz M et al (2013) OctoMap: an efficient probabilistic 3D mapping framework based on octrees. Auton Robot 34(3):189–206

    Article  Google Scholar 

  7. Hu J, Niu Y, Wang Z (2017) Obstacle avoidance methods for rotor UAVS using realsense camera. In: 2017 Chinese automation congress (CAC). IEEE, pp 7151–7155

    Google Scholar 

  8. Ma Z, Wang C, Niu Y et al (2018) A saliency-based reinforcement learning approach for a UAV to avoid flying obstacles. Robot Auton Syst 100:108–118

    Article  Google Scholar 

  9. LaValle SM (1998) Rapidly-exploring random trees: a new tool for path planning

    Google Scholar 

  10. Kuffner JJ, LaValle SM (2000) RRT-connect: an efficient approach to single-query path planning. In: Proceedings 2000 ICRA. Millennium conference. IEEE international conference on robotics and automation. Symposium proceedings. IEEE, vol 2, pp 995–1001

    Google Scholar 

  11. Shan E, Dai B, Song J et al (2009) A dynamic RRT path planning algorithm based on B-spline. In: 2009 second international symposium on computational intelligence and design. IEEE, vol 2, pp 25–29

    Google Scholar 

  12. Karaman S, Frazzoli E (2011) Sampling-based algorithms for optimal motion planning. Int J Robot Res 30(7):846–894

    Article  Google Scholar 

  13. Webb DJ, Van Den Berg J (2013) Kinodynamic RRT*: asymptotically optimal motion planning for robots with linear dynamics. In: 2013 IEEE international conference on robotics and automation. IEEE, pp 5054–5061

    Google Scholar 

  14. Mellinger D, Kumar V () Minimum snap trajectory generation and control for quadrotors. In: 2011 IEEE international conference on robotics and automation. IEEE, pp 2520–2525

    Google Scholar 

  15. Richter C, Bry A, Roy N (2016) Polynomial trajectory planning for aggressive quadrotor flight in dense indoor environments. Robot Res:649–666

    Google Scholar 

  16. Oleynikova H, Burri M, Taylor Z et al (2016) Continuous-time trajectory optimization for online UAV replanning. In: 2016 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 5332–5339

    Google Scholar 

  17. Gao F, Lin Y, Shen S (2017) Gradient-based online safe trajectory generation for quadrotor flight in complex environments. In: 2017 IEEE/RSJ international conference on intelligent robots and systems (IROS). IEEE, pp 3681–3688

    Google Scholar 

  18. Oleynikova H, Taylor Z, Siegwart R et al (2018) Safe local exploration for replanning in cluttered unknown environments for microaerial vehicles. IEEE Robot Autom Lett 3(3):1474–1481

    Article  Google Scholar 

  19. Li Y (2018) Deep reinforcement learning (2018) ICASSP 2018—2018 IEEE international conference on acoustics, speech and signal processing (ICASSP)

    Google Scholar 

  20. Li Y (2017) Deep reinforcement learning: an overview

    Google Scholar 

  21. Mnih V, Badia A P, Mirza M et al (2016) Asynchronous methods for deep reinforcement learning

    Google Scholar 

  22. Yen GG, Hickey TW (2004) Reinforcement learning algorithms for robotic navigation in dynamic environments. ISA Trans 43(2):217–230

    Article  Google Scholar 

  23. Cheng Y, Zhang W (2018) Concise deep reinforcement learning obstacle avoidance for underactuated unmanned marine vessels. Neurocomputing:272

    Google Scholar 

  24. Xie L, Wang S, Markham A et al (2017) Towards monocular vision based obstacle avoidance through deep reinforcement learning

    Google Scholar 

  25. Wang Z, Schaul T, Hessel M et al (2016) Dueling network architectures for deep reinforcement learning. In: International conference on machine learning, pp 1995–2003

    Google Scholar 

  26. Van Hasselt H, Guez A, Silver D (2015) Deep reinforcement learning with double Q-learning. Comput Sci

    Google Scholar 

  27. Xie L, Wang S, Rosa S et al (2018) Learning with training wheels: speeding up training with a simple controller for deep reinforcement learning

    Google Scholar 

  28. Ma Z (2018) Learning based sense-and-avoid of UAVs. National University of Defense Technology

    Google Scholar 

  29. Kim I, Shin S, Wu J et al (2017) Obstacle avoidance path planning for UAV using reinforcement learning under simulated environment. In: IASER 3rd international conference on electronics, electrical engineering, computer science, Okinawa, pp 34–36

    Google Scholar 

  30. González-Prelcic N, Akl N, Behroozi A et al (2018) Deep reinforcement learning for aerial obstacle avoidance using monocular RGB images

    Google Scholar 

  31. Wang C, Wang J, Zhang X (2018) A deep reinforcement learning approach to flocking and navigation of UAVS in largescale complex environments. In: 2018 IEEE global conference on signal and information processing (GlobalSIP). IEEE, pp 1228–1232

    Google Scholar 

  32. Qin K (2000) General matrix representations for B-splines. Vis Comput 16(3–4):177–186

    Article  Google Scholar 

  33. Lee T, Leok M, McClamroch NH (2010) Geometric tracking control of a quadrotor UAV on SE (3). In: 49th IEEE conference on decision and control (CDC). IEEE, pp 5420–5425

    Google Scholar 

  34. Watkins CJCH, Dayan P (1992) Technical note: Q-learning. Mach Learn 8(3–4):279–292

    MATH  Google Scholar 

  35. Rangel A, Camerer C, Montague PR (2008) A framework for studying the neurobiology of value-based decision making. Nat Rev Neurosci 9(7):545–556

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yifeng Niu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ma, Z., Hu, J., Niu, Y., Yu, H. (2021). Reactive Obstacle Avoidance Method for a UAV. In: Koubaa, A., Azar, A.T. (eds) Deep Learning for Unmanned Systems. Studies in Computational Intelligence, vol 984. Springer, Cham. https://doi.org/10.1007/978-3-030-77939-9_3

Download citation

Publish with us

Policies and ethics