Skip to main content

Geometric Integration of Measure-Preserving Flows for Sampling

  • Conference paper
  • First Online:
Geometric Structures of Statistical Physics, Information Geometry, and Learning (SPIGL 2020)

Abstract

Many of the state-of-the-art Monte Carlo sampling algorithms are inspired by Hamiltonian Monte Carlo and constructed from measure-preserving Langevin diffusions through an appropriate geometric integrator. In this article, following [9] we discuss the general construction of such Hamiltonian-based samplers starting from the canonical recipe of measure-preserving diffusions. Moreover, we discuss the properties that make Hamiltonian mechanics particularly appropriate to devise efficient Monte Carlo methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnaudon, A., Barp, A., Takao, S.: Irreversible Langevin MCMC on lie groups. In: Nielsen, F., Barbaresco, F. (eds.) Geometric Science of Information. Lecture Notes in Computer Science, vol. 11712, pp. 171–179. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26980-7_18

    Chapter  Google Scholar 

  2. Atchadé, Y.F.: An adaptive version for the metropolis adjusted langevin algorithm with a truncated drift. Methodol. Comput. Appl. Probab. 8(2), 235–254 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barp, A.: Hamiltonian Monte Carlo on Lie groups and constrained mechanics on homogeneous manifolds. arXiv preprint arXiv:1903.04662 (2019)

  4. Barp, A.: The bracket geometry of statistics. Ph.D., thesis, Imperial College London (2020)

    Google Scholar 

  5. Barp, A., et al.: Unravelling a geometric conspiracy: the intrinsic geometry of measures and their invariant flows as a foundation for scalable Markov Chain Monte Carlo (2020, in Preparation)

    Google Scholar 

  6. Barp, A., Briol, F.-X., Kennedy, A.D., Girolami, M.: Geometry and dynamics for Markov Chain Monte Carlo. Ann. Rev. Statist. Appl. 5, 451–471 (2018)

    Article  MathSciNet  Google Scholar 

  7. Barp, A., Kennedy, A., Girolami, M.: Hamiltonian Monte Carlo on symmetric and homogeneous spaces via symplectic reduction. arXiv preprint arXiv:1903.02699 (2019)

  8. Barp, A., Oates, C., Porcu, E., Girolami, M., et al.: A riemannian-stein kernel method. arXiv preprint arXiv:1810.04946 (2018)

  9. Barp, A., Takao, S., Betancourt, M., Arnaudon, A., Girolami, M.: A unifying description of measure-preserving diffusions on manifolds using a novel bracket geometry (2020, Submitted to NeurIPS)

    Google Scholar 

  10. Benettin, G., Giorgilli, A.: On the hamiltonian interpolation of near-to-the identity symplectic mappings with application to symplectic integration algorithms. J. Stat. Phys. 74(5–6), 1117–1143 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  11. Betancourt, M.: A general metric for Riemannian manifold Hamiltonian Monte Carlo. In: Nielsen, F., Barbaresco, F. (eds.) Geometric Science of Information. Lecture Notes in Computer Science, vol. 8085, pp. 327–334. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40020-9_35

    Chapter  Google Scholar 

  12. Betancourt, M.: Identifying the optimal integration time in Hamiltonian Monte Carlo. ArXiv e-prints 1601.00225, January 2016

  13. Betancourt, M.: A conceptual introduction to Hamiltonian Monte Carlo. arXiv preprint arXiv:1701.02434 (2017)

  14. Betancourt, M., Byrne, S., Girolami, M.: Optimizing the integrator step size for Hamiltonian Monte Carlo. ArXiv e-prints, 1410.5110, November 2014

    Google Scholar 

  15. Betancourt, M., Byrne, S., Livingstone, S., Girolami, M., et al.: The geometric foundations of Hamiltonian Monte Carlo. Bernoulli 23(4A), 2257–2298 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Bou-Rabee, N., Donev, A., Vanden-Eijnden, E.: Metropolis integration schemes for self-adjoint diffusions. Multiscale Model. Simul. 12(2), 781–831 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Bou-Rabee, N., Sanz-Serna, J.M.: Geometric integrators and the Hamiltonian Monte Carlo method. arXiv preprint arXiv:1711.05337 (2017)

  18. Campos, C.M., Sanz-Serna, J.M.: Palindromic 3-stage splitting integrators, a roadmap. J. Comput. Phys. 346, 340–355 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Cances, E., Legoll, F., Stoltz, G.: Theoretical and numerical comparison of some sampling methods for molecular dynamics. ESAIM: Math. Model. Numer. Anal. 41(2), 351–389 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, W.Y., et al.: Stein point Markov Chain Monte Carlo. arXiv preprint arXiv:1905.03673 (2019)

  21. Chen, W.Y., Mackey, L., Gorham, J., Briol, F.-X., Oates, C.J.: Stein points. arXiv preprint arXiv:1803.10161 (2018)

  22. Clark, M.A., Kennedy, A.D., Silva, P.J.: Tuning HMC using poisson brackets. arXiv preprint arXiv:0810.1315 (2008)

  23. Dobson, P., Fursov, I., Lord, G., Ottobre, M.: Reversible and non-reversible markov chain monte carlo algorithms for reservoir simulation problems. arXiv preprint arXiv:1903.06960 (2019)

  24. Duane, S., Kennedy, A.D., Pendleton, B.J., Roweth, D.: Hybrid Monte Carlo. Phys. Lett. B 195(2), 216–222 (1987)

    Article  MathSciNet  Google Scholar 

  25. DufourDufour, J.-P., Haraki, A.: Rotationnnels et structures de poisson quadratiques. Comptes rendus de l’Académie des sciences. Série 1, Mathématique 312(1), 137–140 (1991)

    Google Scholar 

  26. Dufour, J.-P., Zung, N.T.: Poisson Structures and Their Normal Forms, vol. 242. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  27. Durmus, A., Moulines, E., Pereyra, M.: Efficient Bayesian computation by proximal Markov chain Monte Carlo: when Langevin meets Moreau. SIAM J. Imag. Sci. 11(1), 473–506 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  28. Fang, Y., Sanz-Serna, J.-M., Skeel, R.D.: Compressible generalized hybrid monte carlo. J. Chem. Phys. 140(17), 174108 (2014)

    Article  Google Scholar 

  29. Girolami, M., Calderhead, B.: Riemann manifold Langevin and Hamiltonian Monte Carlo methods. J. R. Statist. Soc.: Ser. B (Statist. Methodol.) 73(2), 123–214 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Graham, M.M., Thiery, A.H., Beskos, A.: Manifold Markov Chain Monte Carlo methods for bayesian inference in a wide class of diffusion models. arXiv preprint arXiv:1912.02982 (2019)

  31. Guedira, F., Lichnerowicz, A.: Géométrie des algébres de lie locales de kirillov. J. de mathématiques pures et appliquées 63(4), 407–484 (1984)

    MathSciNet  MATH  Google Scholar 

  32. Hairer, E., Lubich, C., Lubich, G.: Geometric Numerical Integration: Structure-preserving Algorithms for Ordinary Differential Equations, vol. 31. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  33. Holbrook, A., Lan, S., Vandenberg-Rodes, A., Shahbaba, B.: Geodesic Lagrangian Monte Carlo over the space of positive definite matrices: with application to Bayesian spectral density estimation. J. Statist. Comput. Simul. 88, 982–1002 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  34. Holbrook, A., Vandenberg-Rodes, A., Shahbaba, B.: Bayesian inference on matrix manifolds for linear dimensionality reduction. arXiv preprint arXiv:1606.04478 (2016)

  35. Horowitz, A.M.: A generalized guided Monte Carlo algorithm. Phys. Lett. B 268(CERN–TH–6172–91), 247–252 (1991)

    Article  Google Scholar 

  36. Izaguirre, J.A., Hampton, S.S.: Shadow hybrid Monte Carlo: an efficient propagator in phase space of macromolecules. J. Comput. Phys. 200(2), 581–604 (2004)

    Article  MATH  Google Scholar 

  37. Joseph, V.R., Dasgupta, T., Tuo, R., Wu, C.F.J.: Sequential exploration of complex surfaces using minimum energy designs. Technometrics 57(1), 64–74 (2015)

    Article  MathSciNet  Google Scholar 

  38. Kennedy, A.D., Pendleton, B.: Cost of the generalised hybrid monte carlo algorithm for free field theory. Nucl. Phys. B 607(3), 456–510 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  39. Kennedy, A.D., Silva, P.J., Clark, M.A.: Shadow hamiltonians, poisson brackets, and gauge theories. Phys. Rev. 87(3), 034511 (2013)

    Google Scholar 

  40. Koszul, J.-L.: Crochet de schouten-nijenhuis et cohomologie. Astérisque 137, 257–271 (1985)

    MathSciNet  MATH  Google Scholar 

  41. Leimkuhler, B., Matthews, C.: Efficient molecular dynamics using geodesic integration and solvent-solute splitting. Proc. R. Soc. A: Math. Phys. Eng. Sci. 472(2189), 20160138 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  42. Leimkuhler, B., Matthews, C., Stoltz, G.: The computation of averages from equilibrium and nonequilibrium Langevin molecular dynamics. IMA J. Numer. Anal. 36(1), 13–79 (2015)

    MathSciNet  MATH  Google Scholar 

  43. Leimkuhler, B., Reich, S.: Simulating Hamiltonian Dynamics, vol. 14. Cambridge University Press, Cambridge (2004)

    MATH  Google Scholar 

  44. Leimkuhler, B.J., Reich, S., Skeel, R.D.: Integration methods for molecular dynamics. In: Mesirov, J.P., Schulten, K., Sumners, D.W. (eds.) Mathematical Approaches to Biomolecular Structure and Dynamics. The IMA Volumes in Mathematics and its Applications, vol. 82. Springer, New York (1996). https://doi.org/10.1007/978-1-4612-4066-2_10

    Chapter  Google Scholar 

  45. Lelievre, T., Rousset, M., Stoltz, G.: Langevin dynamics with constraints and computation of free energy differences. Math. Comput. 81(280), 2071–2125 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  46. Lelièvre, T., Rousset, M., Stoltz, G.: Hybrid monte carlo methods for sampling probability measures on submanifolds. Numer. Math. 143(2), 379–421 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  47. Liu, Q., Wang, D.: Stein variational gradient descent: a general purpose bayesian inference algorithm. Adv. Neural. Inf. Process. Syst. 29, 2378–2386 (2016)

    Google Scholar 

  48. Livingstone, S., Girolami, M.: Information-geometric Markov Chain Monte Carlo methods using diffusions. Entropy 16(6), 3074–3102 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Ma, Y.-A., Chen, T., Fox, E.: A complete recipe for stochastic gradient MCMC. In: Advances in Neural Information Processing Systems, pp. 2917–2925 (2015)

    Google Scholar 

  50. MacKay, D.J.C.: Information Theory Inference and Learning Algorithms. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  51. Mak, S., Joseph, V.R., et al.: Support points. Ann. Statist. 46(6A), 2562–2592 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  52. Marle, C.-M.: The schouten-nijenhuis bracket and interior products. J. Geom. Phys. 23(3), 350–359 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  53. Marsden, J.E., West, M.: Discrete mechanics and variational integrators. Acta Numer 10, 357–514 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  54. McLachlan, R.I., Reinout, G., Quispel, W.: Splitting methods. Acta Numer 11, 341–434 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  55. Neal, R.M., et al.: MCMC using hamiltonian dynamics. In: Handbook of Markov Chain Monte Carlo, vol. 2, no. 11, p. 2 (2011)

    Google Scholar 

  56. Ottobre, M.: Markov Chain Monte Carlo and irreversibility. Rep. Math. Phys. 77(3), 267–292 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  57. Ottobre, M., Pillai, N.S., Pinski, F.J., Stuart, A.M., et al.: A function space HMC algorithm with second order Langevin diffusion limit. Bernoulli 22(1), 60–106 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  58. Parno, M.D.: Transport maps for accelerated Bayesian computation. Ph.D., thesis, Massachusetts Institute of Technology (2015)

    Google Scholar 

  59. Radivojević, T., Akhmatskaya, E.: Modified Hamiltonian Monte Carlo for Bayesian inference. Statist. Comput. 30, 377–404 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  60. Radivojević, T., Fernández-Pendás, M., Sanz-Serna, J.M., Akhmatskaya, E.: Multi-stage splitting integrators for sampling with modified Hamiltonian Monte Carlo methods. J. Comput. Phys. 373, 900–916 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  61. Robert, C., Casella, G.: Monte Carlo Statistical Methods. Springer, Heidelberg (2004)

    Book  MATH  Google Scholar 

  62. Roberts, G.O., Tweedie, R.L., et al.: Exponential convergence of Langevin distributions and their discrete approximations. Bernoulli 2(4), 341–363 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  63. Stoltz, G., Rousset, M., et al.: Free Energy Computations: A Mathematical Perspective. World Scientific, Singapore (2010)

    MATH  Google Scholar 

  64. Vanetti, P., Bouchard-Côté, A., Deligiannidis, G., Doucet, A.: Piecewise-deterministic markov chain monte carlo. arXiv preprint arXiv:1707.05296 (2017)

  65. Weinstein, A.: The modular automorphism group of a poisson manifold. J. Geom. Phys. 23(3–4), 379–394 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  66. Xifara, T., Sherlock, C., Livingstone, S., Byrne, S., Girolami, M.: Langevin diffusions and the metropolis-adjusted Langevin algorithm. Statist. Probab. Lett. 91, 14–19 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Barp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barp, A. (2021). Geometric Integration of Measure-Preserving Flows for Sampling. In: Barbaresco, F., Nielsen, F. (eds) Geometric Structures of Statistical Physics, Information Geometry, and Learning. SPIGL 2020. Springer Proceedings in Mathematics & Statistics, vol 361. Springer, Cham. https://doi.org/10.1007/978-3-030-77957-3_18

Download citation

Publish with us

Policies and ethics