Abstract
We consider the integrable Hamiltonian System of the Peakons-Anti Peakons associated with the Camassa-Holm equation. Following previous contributions of Nakamura for the Toda Lattice, we discuss its link with the Geometry of Information.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Amari, S.I.: Information geometry and its applications. Applied Mathematical Sciences, vol. 194. Springer, Japan (2016). https://doi.org/10.1007/978-4-431-55978-8
Ay, N., Jost, J., Lê, H., Schwachhofer, L.: Information geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete. A Series of Modern Surveys in Mathematics, vol. 64. Springer, Cham (2017)
Amari, S., Nagaoka, H.: Methods of information geometry. Translated from the 1993 Japanese original by Daishi Harada. Translations of Mathematical Monographs, vol. 191, x+206 pp. American Mathematical Society, Providence, RI; Oxford University Press, Oxford (2000)
Beals, R., Sattinger, D.H., Szmigielski, J.: Multipeakons and the classical moment problem. Adv. Math. 154(2), 229–257 (2000)
Beals, R., Sattinger, D.H., Szmigielski, J.: Peakons strings, and the finite Toda lattice. Comm. Pure Appl. Math. 54(1), 91–106 (2001)
Beals, R., Sattinger, D.H., Szmigielski, J.: Periodic peakons and Calogero-Françoise flows. J. Inst. Math. Jussieu 4(1), 1–27 (2005)
Beals, R., Sattinger, D.H., Szmigielski, J.: The string density problem and the Camassa-Holm equation. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 365(1858), 2299–2312 (2007)
Bloch, A.M., Brockett, R.W., Ratiu, T.S.: Completely integrable gradient flows. Comm. Math. Phys. 147(1), 57–74 (1992)
Camassa, R., Holm, D.D.: An integrable shallow water equation with peaked solitons. Phys. Rev. Lett. 71, 1660–1664 (1993)
Chentsov, N.: Category of mathematical statistics. Dokl. Akad. Nauk SSSR 164, 511–514 (1965)
Morse, N., Sacksteder, R.: Statistical isomorphism. Ann. Math. Stat. 37, 203–214 (1966)
Moser, J.: Finitely many mass points on the line under the influence of an exponential potential – an integrable system. In: Moser J. (eds.) Dynamical Systems, Theory and Applications. Lecture Notes in Physics, vol. 38. Springer, Berlin, Heidelberg (1975). https://doi.org/10.1007/3-540-07171-7_12
Nakamura, Y.: A tau-function for the finite Toda molecule, and information spaces. Symplectic Geometry and Quantization (Sanda and Yokohama, 1993), vol. 179, pp. 205–211. Contemporary Mathematics, American Mathematical Society, Providence, RI (1994)
Nakamura, Y.: Neurodynamics and nonlinear integrable systems of Lax type. Japan J. Indust. Appl. Math. 11(1), 11–20 (1994)
Nakamura, Y., Kodama, Y.: Moment problem of Hamburger, hierarchies of integrable systems, and the positivity of tau-functions. KdV ’95 (Amsterdam, 1995). Acta Appl. Math. 39(1–3), 435–443 (1995)
Shima, H.: The Geometry of Hessian Structures. World Scientific Publishing, Singapore (2007)
Stieltjes, T.-J.: Sur la réduction en fraction continue d’une série procédant suivant les puissances descendantes d’une variable. (French) [Reduction to a continued fraction of a series in descending powers of a variable] Reprint of the 1889 original. Ann. Fac. Sci. Toulouse Math. 5(6)(1), H1–H17 (1996)
Sato, M., Sato, Y.: Soliton equations as dynamical systems on infinite-dimensional Grassmann manifold. Nonlinear Partial Differential Equations in Applied Science (Tokyo, 1982), vol. 81, pp. 259–271. North-Holland Mathematics StudiesLecture Notes in Numerical and Applied Analysis 5, North-Holland, Amsterdam (1983)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Françoise, JP. (2021). Information Geometry and Integrable Hamiltonian Systems. In: Barbaresco, F., Nielsen, F. (eds) Geometric Structures of Statistical Physics, Information Geometry, and Learning. SPIGL 2020. Springer Proceedings in Mathematics & Statistics, vol 361. Springer, Cham. https://doi.org/10.1007/978-3-030-77957-3_8
Download citation
DOI: https://doi.org/10.1007/978-3-030-77957-3_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-77956-6
Online ISBN: 978-3-030-77957-3
eBook Packages: Mathematics and StatisticsMathematics and Statistics (R0)