Skip to main content

An Exact Algorithm for Finite Metric Space Embedding into a Euclidean Space When the Dimension of the Space Is Not Known

  • Conference paper
  • First Online:
Computational Science – ICCS 2021 (ICCS 2021)

Abstract

We present a \(O(n^3)\) algorithm for solving the Distance Geometry Problem for a complete graph (a simple undirected graph in which every pair of distinct vertices is connected by a unique edge) consisting of \(n+1\) vertices and non-negatively weighted edges. It is known that when the solution of the problem exists, the dimension of the Euclidean embedding is at most n. The algorithm provides the smallest possible dimension of the Euclidean space for which the exact embedding of the graph exists. Alternatively, when the distance matrix under consideration is non-Euclidean, the algorithm determines a subset of graph vertices whose mutual distances form the Euclidean matrix. The proposed algorithm is an exact algorithm. If the distance matrix is a Euclidean matrix, the algorithm provides a geometrically unambiguous solution for the location of the graph vertices.

The presented embedding method was illustrated using examples of the metric traveling salesman problem that allowed us in some cases to obtain high dimensional partial immersions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alfakih, A., Khandani, A., Wolkowicz, H.: Solving Euclidean distance matrix completion problems via semidefinite programming. Comput. Optim. Appl. 12, 13–30 (1999)

    Article  MathSciNet  Google Scholar 

  2. Asimow, L., Roth, B.: The rigidity of graphs. Trans. Amer. Math. Soc. 245, 279–289 (1978)

    Article  MathSciNet  Google Scholar 

  3. Barvinok, A.I.: Problems of distance geometry and convex properties of quadratic maps. Discrete Comput. Geom. 13(2), 189–202 (1995). https://doi.org/10.1007/BF02574037

    Article  MathSciNet  MATH  Google Scholar 

  4. Biswas, P., Lian, T., Wang, T., Ye, Y.: Semidefinite programming based algorithms for sensor network localization. ACM Trans. Sens. Netw. 2(2), 188–220 (2006)

    Article  Google Scholar 

  5. Blumenthal, L.: Theory and Applications of Distance Geometry. Oxford University Press, Oxford (1953)

    MATH  Google Scholar 

  6. Cao, M., Anderson, B.D.O., Morse, S.: Sensor network localization with imprecise distances. Syst. Control Lett. 55, 887–893 (2006)

    Article  MathSciNet  Google Scholar 

  7. Courrieu, P.: Straight monotonic embedding of data sets in Euclidean spaces. Neural Netw. 15, 1185–1196 (2002)

    Article  Google Scholar 

  8. Coxeter, H.S.M.: Introduction to Geometry, 2nd edn. Wiley, Hoboken (1969)

    MATH  Google Scholar 

  9. Crapo, H.: Structural rigidity. Struct. Topol. 73(1), 26–45 (1979)

    MathSciNet  MATH  Google Scholar 

  10. Ding, Y., Krislock, N., Qian, J., Wolkowicz, H.: Sensor network localization, Euclidean distance matrix completions, and graph realization. Optim. Eng. 11(1), 45–66 (2010)

    Article  MathSciNet  Google Scholar 

  11. Dokmanic, I., Parhizkar, R., Ranieri, J., Vetterli, M.: Euclidean distance matrices: essential theory, algorithms, and applications. IEEE Signal Process. Mag. 32(6), 12–30 (2015). https://doi.org/10.1109/MSP.2015.2398954

    Article  Google Scholar 

  12. Dong, Q., Wu, Z.: A linear-time algorithm for solving the molecular distance geometry problem with exact inter-atomic distances. J. Glob. Optim. 22, 365–375 (2002)

    Article  MathSciNet  Google Scholar 

  13. Gower, J.: Euclidean distance geometry. Math. Sci. 7, 1–14 (1982)

    MathSciNet  MATH  Google Scholar 

  14. Lavor C.: On generating instances for the molecular distance geometry problem. In: Liberti, L., Maculan, N. (eds.) Global Optimization: From Theory to Implementation. Nonconvex Optimization and Its Applications, vol. 84, pp. 405–414. Springer, Boston (2006). https://doi.org/10.1007/0-387-30528-9_14

  15. Liberti, L., Lavor, C., Nelson, M.N., Mucherino, A.: Euclidean distance geometry and applications. SIAM Rev. 56(1), 3–69 (2014)

    Article  MathSciNet  Google Scholar 

  16. Liberti, L., Lavor, C.: Euclidean Distance Geometry. An Introduction. Springer International Publishing Switzerland, Cham (2017)

    Book  Google Scholar 

  17. Liberti, L.: Distance geometry and data science. TOP 28(2), 271–339 (2020). https://doi.org/10.1007/s11750-020-00563-0

    Article  MathSciNet  MATH  Google Scholar 

  18. Maehara, H.: Euclidean embeddings of finite metric spaces. Discrete Math. 313, 2848–2856 (2013)

    Article  MathSciNet  Google Scholar 

  19. Menger, K.: New foundation of Euclidean geometry. Amer. J. Math. 53, 721–745 (1931)

    Article  MathSciNet  Google Scholar 

  20. Reinelt, G.: TSPLIB - a traveling salesman problem library. ORSA J. Comput. 3(4), 376–384 (1991)

    Google Scholar 

  21. Saxe, J.B.: Embeddability of weighted graphs in k-space is strongly NP-hard. In: Proceedings of the 17th Allerton Conference in Communications, Control, and Computing, pp. 480–489 (1979)

    Google Scholar 

  22. Schoenberg, I.J.: Metric spaces and positive definite functions. Trans. Am. Math. Soc. 44, 522–536 (1938)

    Article  MathSciNet  Google Scholar 

  23. Sippl, M., Scheraga, H.: Cayley-menger coordinates. Proc. Natl. Acad. Sci. USA 83, 2283–2287 (1986)

    Article  MathSciNet  Google Scholar 

  24. Stroeker, R.J.: On the sum of consecutive cubes being a perfect square. Compositio Mathematica 97(1–2), 295–307 (1995)

    MathSciNet  MATH  Google Scholar 

  25. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  26. Tasissa, A., Lai, R.: Exact reconstruction of Euclidean distance geometry problem using low-rank matrix completion. IEEE Trans. Inf. Theor. 65(5), 3124–3144 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Skubalska-Rafajłowicz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Skubalska-Rafajłowicz, E., Rafajłowicz, W. (2021). An Exact Algorithm for Finite Metric Space Embedding into a Euclidean Space When the Dimension of the Space Is Not Known. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12742. Springer, Cham. https://doi.org/10.1007/978-3-030-77961-0_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77961-0_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77960-3

  • Online ISBN: 978-3-030-77961-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics