Skip to main content

Error Estimation and Correction Using the Forward CENA Method

  • Conference paper
  • First Online:
Computational Science – ICCS 2021 (ICCS 2021)

Abstract

The increasing use of heterogeneous and more energy-efficient computing systems has led to a renewed demand for reduced- or mixed-precision floating-point arithmetic. In light of this, we present the forward CENA method as an efficient roundoff error estimator and corrector. Unlike the previously published CENA method, our forward variant can be easily used in parallel high-performance computing applications. Just like the original variant, its error estimation capabilities can point out code regions where reduced or mixed precision still achieves sufficient accuracy, while the error correction capabilities can increase precision over what is natively supported on a given hardware platform, whenever higher accuracy is needed. CENA methods can also be used to increase the reproducibility of parallel sum reductions.

The submitted manuscript has been created by UChicago Argonne, LLC, Operator of Argonne National Laboratory (‘Argonne’). Argonne, a U.S. Department of Energy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S. Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government. The Department of Energy will provide public access to these results of federally sponsored research in accordance with the DOE Public Access Plan. http://energy.gov/downloads/doe-public-access-plan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahrens, P., Demmel, J., Nguyen, H.D.: Algorithms for efficient reproducible floating point summation. ACM Trans. Math. Softw. 46(3), 1–49 (2020)

    Google Scholar 

  2. Ballard, G., Benson, A.R., Druinsky, A., Lipshitz, B., Schwartz, O.: Improving the numerical stability of fast matrix multiplication. SIAM J. Matrix Anal. Appl. 37(4), 1382–1418 (2016)

    Article  MathSciNet  Google Scholar 

  3. Bischof, C.H., Carle, A., Hovland, P.D., Khademi, P., Mauer, A.: ADIFOR 2.0 user’s guide (Revision D). Argonne Technical Memorandum 192 (1998)

    Google Scholar 

  4. Christianson, B.: Reverse accumulation and accurate rounding error estimates for Taylor series coefficient. Optim. Methods Softw. 1(1), 81–94 (1992)

    Article  MathSciNet  Google Scholar 

  5. Fousse, L., Hanrot, G., Lefèvre, V., Pélissier, P., Zimmermann, P.: MPFR: a multiple-precision binary floating-point library with correct rounding. ACM Trans. Math. Softw. 33(2), 13es (2007)

    Google Scholar 

  6. Garcia, R., Michel, C., Rueher, M.: A branch-and-bound algorithm to rigorously enclose the round-off errors. In: Simonis, H. (ed.) CP 2020. LNCS, vol. 12333, pp. 637–653. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58475-7_37

    Chapter  Google Scholar 

  7. Graillat, S., Ménissier-Morain, V.: Accurate summation, dot product and polynomial evaluation in complex floating point arithmetic. Inf. Comput. 216, 57–71 (2012)

    Article  MathSciNet  Google Scholar 

  8. Griewank, A., Walther, A.: Evaluating Derivatives. Society for Industrial and Applied Mathematics (2008). https://doi.org/10.1137/1.9780898717761

  9. Habib, S., et al.: HACC: Simulating sky surveys on state-of-the-art supercomputing architectures. New Astron. 42, 49–65 (2016)

    Google Scholar 

  10. Higham, N.J.: Exploiting fast matrix multiplication within the level 3 BLAS. ACM Trans. Math. Softw. 16(4), 352–368 (1990)

    Article  MathSciNet  Google Scholar 

  11. Iri, M., Tsuchiya, T., Hoshi, M.: Automatic computation of partial derivatives and rounding error estimates with applications to large-scale systems of nonlinear equations. J. Comput. Appl. Math. 24(3), 365–392 (1988)

    Article  Google Scholar 

  12. Jézéquel, F., Graillat, S., Mukunoki, D., Imamura, T., Iakymchuk, R.: Can we avoid rounding-error estimation in HPC codes and still get trustworthy results? In: Christakis, M., Polikarpova, N., Duggirala, P.S., Schrammel, P. (eds.) NSV/VSTTE -2020. LNCS, vol. 12549, pp. 163–177. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-63618-0_10

    Chapter  Google Scholar 

  13. Jézéquel, F., Chesneaux, J.M.: CADNA: a library for estimating round-off error propagation. Comput. Phys. Commun. 178(12), 933–955 (2008)

    Article  Google Scholar 

  14. Kahan, W.: Pracniques: further remarks on reducing truncation errors. Commun. ACM 8(1), 40 (1965). https://doi.org/10.1145/363707.363723

    Article  Google Scholar 

  15. Kahan, W.: How futile are mindless assessments of roundoff in floating-point computation? (2006). http://www.cs.berkeley.edu/~wkahan/Mindless.pdf

  16. Langlois, P.: Automatic linear correction of rounding errors. BIT Numer. Math. 41(3), 515–539 (2001)

    Article  MathSciNet  Google Scholar 

  17. Linnainmaa, S.: Taylor expansion of the accumulated rounding error. BIT Numer. Math. 16(2), 146–160 (1976)

    Article  MathSciNet  Google Scholar 

  18. Martel, M.: Semantics of roundoff error propagation in finite precision calculations. Higher-Order Symbolic Comput. 19(1), 7–30 (2006)

    Article  Google Scholar 

  19. Menon, H., et al.: ADAPT: Algorithmic differentiation applied to floating-point precision tuning. In: Proceedings of SC 2018, pp. 48:1–13. IEEE Press, Piscataway, NJ (2018)

    Google Scholar 

  20. Ogita, T., Rump, S.M., Oishi, S.: Accurate sum and dot product. SIAM J. Sci. Comput. 26(6), 1955–1988 (2005)

    Article  MathSciNet  Google Scholar 

  21. Solovyev, A., Baranowski, M.S., Briggs, I., Jacobsen, C., Rakamarić, Z., Gopalakrishnan, G.: Rigorous estimation of floating-point round-off errors with symbolic Taylor expansions. ACM Trans. Program. Lang. Syst. 41(1), 2:1–39 (2018)

    Google Scholar 

  22. Tienari, M.: A statistical model of roundoff error for varying length floating-point arithmetic. BIT Numer. Math. 10(3), 355–365 (1970)

    Article  MathSciNet  Google Scholar 

  23. Vassiliadis, V., et al.: Towards automatic significance analysis for approximate computing. In: 2016 IEEE/ACM International Symposium on Code Generation and Optimization (CGO), pp. 182–193 (March 2016)

    Google Scholar 

  24. Vignes, J.: Discrete stochastic arithmetic for validating results of numerical software. Numer. Algorithms 37(1–4), 377–390 (2004)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

We thank Vincent Baudoui for introducing us to the CENA method and constructive conversations about roundoff error. This work was supported by the U.S. Department of Energy, Office of Science, Office of Advanced Scientific Computing Research, Applied Mathematics program under contract number DE-AC02-06CH11357. We gratefully acknowledge the computing resources provided and operated by the Joint Laboratory for System Evaluation (JLSE) at Argonne National Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Hückelheim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hovland, P.D., Hückelheim, J. (2021). Error Estimation and Correction Using the Forward CENA Method. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12742. Springer, Cham. https://doi.org/10.1007/978-3-030-77961-0_61

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77961-0_61

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77960-3

  • Online ISBN: 978-3-030-77961-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics