Skip to main content

AI-Accelerated CFD Simulation Based on OpenFOAM and CPU/GPU Computing

  • Conference paper
  • First Online:
Computational Science – ICCS 2021 (ICCS 2021)

Abstract

In this paper, we propose a method for accelerating CFD (computational fluid dynamics) simulations by integrating a conventional CFD solver with our AI module. The investigated phenomenon is responsible for chemical mixing. The considered CFD simulations belong to a group of steady-state simulations and utilize the MixIT tool, which is based on the OpenFOAM toolbox. The proposed module is implemented as a CNN (convolutional neural network) supervised learning algorithm. Our method distributes the data by creating a separate AI sub-model for each quantity of the simulated phenomenon. These sub-models can then be pipelined during the inference stage to reduce the execution time or called one-by-one to reduce memory requirements.

We examine the performance of the proposed method depending on the usage of the CPU or GPU platforms. For test experiments with varying quantities conditions, we achieve time-to-solution reductions around a factor of 10. Comparing simulation results based on the histogram comparison method shows the average accuracy for all the quantities around 92%.

The authors are grateful to the byteLAKE company for their substantive support. We also thank Valerio Rizzo and Robert Daigle from Lenovo Data Center and Andrzej Jankowski from Intel for their support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Archibald, R., et al.: Integrating deep learning in domain sciences at exascale. arXiv preprint arXiv:2011.11188v1 (2020)

  2. Bhatt, D., Zhang, B.W., Zuckerman, D.M.: Steady-state simulations using weighted ensemble path sampling. J. Chem. Phys. 133(1), 014110 (2010)

    Article  Google Scholar 

  3. Chen, D., Hu, F., Nian, G., Yang, T.: Deep residual learning for nonlinear regression. Entropy 22(2), 193 (2020)

    Article  MathSciNet  Google Scholar 

  4. Jim, M., Ray, D., Hesthaven, J.S., Rohde, C.: Constraint-aware neural networks for Riemann problems. arXiv preprint arXiv:3327.50678 (2019)

  5. Paul, E.L., Atiemo-Obeng, V., Kresta, S.M. (eds.): Handbook of Industrial Mixing: Science and Practice. Wiley, Hoboken (2004)

    Google Scholar 

  6. Jouppi, N.P., Young, C., Patil, N., Patterson, D.: A domain-specific architecture for deep neural networks. Commmun. ACM 61(9), 50–59 (2018)

    Article  Google Scholar 

  7. Kim, B., et al.: Deep fluids: a generative network for parameterized fluid simulations. arXiv preprint arXiv:1806.02071v2 (2019)

  8. Kreitmayer, D. et al.: CFD-based characterization of the single-use bioreactor XcellerexTM XDR-10 for cell culture process optimization. arXiv preprint arXiv:3461.77983 (2020)

  9. Maulik, R., Sharma, H., Patel, S., Lusch, B., Jennings, E.: Accelerating RANS turbulence modeling using potential flow and machine learning. arXiv preprint arXiv:1910.10878 (2019)

  10. MixIT: the enterprise mixing analysis tool. https://mixing-solution.com/. Accessed 5 Feb 2021

  11. Mostafazadeh, B., Marti, F., Pourghassemi, B., Liu, F., Chandramowlishwaran, A.: Unsteady Navier-Stokes computations on GPU architectures. In: 23rd AIAA Computational Fluid Dynamics Conference (2017). https://doi.org/10.2514/6.2017-4508

  12. Obiols-Sales, O., Vishnu, A., Malaya, N., Chandramowlishwaran, A.: CFDNet: a deep learning-based accelerator for fluid simulations. In: Proceedings of the 34th ACM International Conference on Supercomputing (ICS 2020), pp. 1–12. ACM (2020)

    Google Scholar 

  13. OpenFOAM: the open source CFD toolbox. https://www.openfoam.com. Accessed 5 Feb 2021

  14. Rojek, K., et al.: Adaptation of fluid model EULAG to graphics processing unit architecture. Concurr. Comput. Pract. Exp. 27(4), 937–957 (2015)

    Article  Google Scholar 

  15. Rojek, K., Wyrzykowski, R., Kuczynski, L.: Systematic adaptation of stencil-based 3D MPDATA to GPU architectures. Concurr. Comput. Pract. Exp. 29(9), e3970 (2017)

    Article  Google Scholar 

  16. Rojek, K., Halbiniak, K., Kuczynski, L.: CFD code adaptation to the FPGA architecture. Int. J. High Perform. Comput. Appl. 35(1), 33–46 (2021)

    Article  Google Scholar 

  17. Sanchez-Gonzalez, A., et al.: Learning to simulate complex physics with graph networks. arXiv preprint arXiv:3394.45567 (2020)

  18. Schwartz, R., Dodge, J., Smith, N.A., Etzioni, O.: Green AI. Commmun. ACM 63(12), 54–63 (2020)

    Article  Google Scholar 

  19. Szustak, L., Rojek, K., Olas, T., Kuczynski, L., Halbiniak, K., Gepner, P.: Adaptation of MPDATA heterogeneous stencil computation to Intel Xeon Phi coprocessor. Sci. Program., 14 (2015). https://doi.org/10.1155/2015/642705

  20. Szustak, L., Wyrzykowski, R., Olas, T., Mele, V.: Correlation of performance optimizations and energy consumption for stencil-based application on Intel Xeon scalable processors. IEEE Trans. Parallel Distrib. Syst. 31(11), 2582–2593 (2020)

    Article  Google Scholar 

  21. Tompson, J., Schlachter, K., Sprechmann, P., Perlin, K.H.: Accelerating Eulerian fluid simulation with convolutional networks. In: ICML2017: Proceedings of the 34th International Conference on Machine Learning, PLMR 70, pp. 3424–3433 (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krzysztof Rojek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rojek, K., Wyrzykowski, R., Gepner, P. (2021). AI-Accelerated CFD Simulation Based on OpenFOAM and CPU/GPU Computing. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12743. Springer, Cham. https://doi.org/10.1007/978-3-030-77964-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77964-1_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77963-4

  • Online ISBN: 978-3-030-77964-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics