Abstract
Detailed models of numerous groups of social beings, which find applications in broad range of applications, require efficient methods of parallel simulation. Detailed features of particular models strongly influence the complexity of the parallelization problem. In this paper we identify and analyze existing classes of models and possible approaches to their simulation parallelization. We propose a new method for efficient scalability of the most challenging class of models: stochastic, with beings mobility and mutual exclusion of actions. The method is based on a concept of two-stage application of plans, which ensures equivalence of parallel and sequential execution. The method is analyzed in terms of distribution transparency and scalability at HPC-grade hardware. Both weak and strong scalability tests show speedup close to linear with more than 3000 parallel workers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
References
Bezbradica, M., Crane, M., Ruskin, H.J.: Parallelisation strategies for large scale cellular automata frameworks in pharmaceutical modelling. In: 2012 International Conference on High Performance Computing & Simulation (HPCS), pp. 223–230. IEEE (2012)
Bowzer, C., Phan, B., Cohen, K., Fukuda, M.: Collision-free agent migration in spatial simulation. In: Proceedings of 11th Joint Agent-Oriented Workshops in Synergy (JAWS 2017), Prague, Czech (2017)
Bujas, J., Dworak, D., Turek, W., Byrski, A.: High-performance computing framework with desynchronized information propagation for large-scale simulations. J. Comput. Sci. 32, 70–86 (2019)
Giordano, A., De Rango, A., D’Ambrosio, D., Rongo, R., Spataro, W.: Strategies for parallel execution of cellular automata in distributed memory architectures. In: 2019 27th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp. 406–413 (2019)
Kłusek, A., Topa, P., Wąs, J., Lubaś, R.: An implementation of the social distances model using multi-GPU systems. Int. J. High Perform. Comput. Appl. 32(4), 482–495 (2018)
Kruskal, W.H., Wallis, W.A.: Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47(260), 583–621 (1952)
Paciorek, M., Bogacz, A., Turek, W.: Scalable signal-based simulation of autonomous beings in complex environments. In: Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol. 12139, pp. 144–157. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50420-5_11
Paciorek, M., Bujas, J., Dworak, D., Turek, W., Byrski, A.: Validation of signal propagation modeling for highly scalable simulations. Concurr. Comput. Pract. Exp,. e5718 (2020). https://doi.org/10.1002/cpe.5718
Railsback, S.F., Grimm, V.: Agent-Based and Individual-based Modeling: A Practical Introduction. Princeton University Press, Princeton (2019)
Turek, W.: Erlang-based desynchronized urban traffic simulation for high-performance computing systems. Futur. Gener. Comput. Syst. 79, 645–652 (2018)
Xia, C., Wang, H., Zhang, A., Zhang, W.: A high-performance cellular automata model for urban simulation based on vectorization and parallel computing technology. Int. J. Geogr. Inf. Sci. 32(2), 399–424 (2018)
Acknowledgements
The research presented in this paper was partially supported by the funds of Polish Ministry of Science and Higher Education assigned to AGH University of Science and Technology. This research was supported in part by PLGrid Infrastructure.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Paciorek, M., Turek, W. (2021). Agent-Based Modeling of Social Phenomena for High Performance Distributed Simulations. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12743. Springer, Cham. https://doi.org/10.1007/978-3-030-77964-1_32
Download citation
DOI: https://doi.org/10.1007/978-3-030-77964-1_32
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-77963-4
Online ISBN: 978-3-030-77964-1
eBook Packages: Computer ScienceComputer Science (R0)