Skip to main content

Modeling the Electromechanics of a Single Cardiac Myocyte

  • Conference paper
  • First Online:
Computational Science – ICCS 2021 (ICCS 2021)

Abstract

The synchronous and proper contraction of cardiomyocytes is essential for the correct function of the whole heart. Computational models of a cardiac cell may spam multiple cellular sub-components, scales, and physics. As a result, they are usually computationally expensive. This work proposes a low-cost model to simulate the cardiac myocyte’s electromechanics. The modeling of action potential and active force is performed via a system of six ordinary differential equations. Cardiac myocyte’s deformation that considers details of its geometry is captured using a mass-spring system. The mathematical model is integrated in time using Verlet’s method to obtain the position, velocity, and acceleration of each discretized point of the single cardiac myocyte. Our numerical results show that the obtained action potential, contraction, and deformation reproduces very well physiological data. Therefore, the low-cost mathematical model proposed here can be used as an essential tool for the correct characterization of cardiac electromechanics.

Supported by UFJF, UFSJ, Capes, CNPq (under grant 153465/2018-2) and Fapemig.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amorim, R.M., Campos, R.S., Lobosco, M., Jacob, C., dos Santos, R.W.: An electro-mechanical cardiac simulator based on cellular automata and mass-spring models. In: Sirakoulis, G.C., Bandini, S. (eds.) ACRI 2012. LNCS, vol. 7495, pp. 434–443. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33350-7_45

    Chapter  Google Scholar 

  2. Bueno-Orovio, A., Cherry, E.M., Fenton, F.H.: Minimal model for human ventricular action potentials in tissue. J. Theor. Biol. 253(3), 544–560 (2008)

    Article  MathSciNet  Google Scholar 

  3. Campos, J., Sundnes, J., Dos Santos, R., Rocha, B.: Uncertainty quantification and sensitivity analysis of left ventricular function during the full cardiac cycle. Philos. Trans. R. Soc. 378(2173), 20190381 (2020)

    Article  Google Scholar 

  4. Campos, R.S., Lobosco, M., dos Santos, R.W.: A GPU-based heart simulator with mass-spring systems and cellular automaton. J. Supercomputing 69(1), 1–8 (2014)

    Article  Google Scholar 

  5. Campos, R.S., Rocha, B.M., Lobosco, M., dos Santos, R.W.: Multilevel parallelism scheme in a genetic algorithm applied to cardiac models with mass-spring systems. J. Supercomputing 73(2), 609–623 (2017)

    Google Scholar 

  6. Kot, M., Nagahashi, H., Szymczak, P.: Elastic moduli of simple mass spring models. Vis. Comput. 31(10), 1339–1350 (2014). https://doi.org/10.1007/s00371-014-1015-5

    Article  Google Scholar 

  7. Oliveira, R.S., et al.: Ectopic beats arise from micro-reentries near infarct regions in simulations of a patient-specific heart model. Sci. Rep. 8(1), 1–14 (2018)

    Google Scholar 

  8. Pappalardo, O., et al.: Mass-spring models for the simulation of mitral valve function: looking for a trade-off between reliability and time-efficiency. Med. Eng. Phys. 47, 93–104 (2017)

    Article  Google Scholar 

  9. Philips, C.M., Duthinh, V., Houser, S.R.: A simple technique to measure the rate and magnitude of shortening of single isolated cardiac myocytes. IEEE Trans. Biomed. Eng. 10, 929–934 (1986)

    Article  Google Scholar 

  10. Silva, J.G.R., Campos, R.S., Xavier, C.R., dos Santos, R.W.: Simplified models for electromechanics of cardiac myocyte. In: Gervasi, O., et al. (eds.) ICCSA 2020. LNCS, vol. 12249, pp. 191–204. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58799-4_14

    Chapter  Google Scholar 

  11. ten Tusscher, K.H., Noble, D., Noble, P.J., Panfilov, A.V.: A model for human ventricular tissue. Am. J. Physiol.-Heart Circulatory Physiol. 286(4), H1573–H1589 (2004)

    Article  Google Scholar 

  12. Weise, L.D., Nash, M.P., Panfilov, A.V.: A discrete model to study reaction-diffusion-mechanics systems. Plos One 6(7), e21934 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Weber dos Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

de Aguiar Bergo Coelho, A.L., Campos, R.S., Silva, J.G.R., Xavier, C.R., Santos, R.W.d. (2021). Modeling the Electromechanics of a Single Cardiac Myocyte. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12743. Springer, Cham. https://doi.org/10.1007/978-3-030-77964-1_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77964-1_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77963-4

  • Online ISBN: 978-3-030-77964-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics