Skip to main content

Analysis of Semestral Progress in Higher Technical Education with HMM Models

  • Conference paper
  • First Online:
Computational Science – ICCS 2021 (ICCS 2021)

Abstract

Supporting educational processes with Hidden Markov Models (HMMs) has great potential. In this paper, we explore the possibility of identifying students’ learning progress with HMMs. Students’ grades are used to train the HMMs to find out if the analysis of obtained models lets us detect patterns emerging from student’s results. We also try to predict the final students’ results on the basis of their partial grades. A new, classification approach for this problem, using properties of HMMs is proposed: High and Low State Model (HLSM).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brainerd, C.J.: Markovian interpretations of conservation learning. Psychol. Rev. 86(3), 181–213 (1979). https://doi.org/10.1037/0033-295X.86.3.181

    Article  Google Scholar 

  2. Brainerd, C.J.: Developmental invariance in a mathematical model of associative learning. Child Dev. 51(2), 349–363 (1980). https://doi.org/10.2307/1129267

    Article  Google Scholar 

  3. Brainerd, C.J.: Three-state models of memory development: a review of advances in statistical methodology. J. Exp. Child Psychol. 40(3), 375–394 (1985). https://doi.org/10.1016/0022-0965(85)90072-4

    Article  Google Scholar 

  4. Cleeremans, A., McClelland, J.L.: Learning the structure of event sequences. J. Exp. Psychol. Gener. 120(3), 235–253 (1991). https://doi.org/10.1037/0096-3445.120.3.235

    Article  Google Scholar 

  5. Geigle, C., Zhai, C.: Modeling student behavior with two-layer hidden Markov models. JEDM 9(1), 1–24 (2017). https://doi.org/10.5281/zenodo.3554623

    Article  Google Scholar 

  6. Kassarnig, V., et al.: Academic performance and behavioral patterns. EPJ Data Sci. 7, 10 (2018). https://doi.org/10.1140/epjds/s13688-018-0138-8

    Article  Google Scholar 

  7. Witteveen, D., Attewell, P.: The college completion puzzle: a hidden Markov model approach. Res. High. Educ. 58, 449–467 (2017). https://doi.org/10.1007/s11162-016-9430-2

    Article  Google Scholar 

  8. Tenison, C., Anderson, J.R.: Modeling the distinct phases of skill acquisition. J. Exp. Psychol. Learn. Mem. Cogn. 42(5), 749–767 (2016). https://doi.org/10.1037/xlm0000204

    Article  Google Scholar 

  9. Logue, A.W., Douglas, D., Watanabe-Rose, M.: Corequisite mathematics remediation: results over time and in different contexts. Educ. Eval. Policy Anal. 41(3), 294–315 (2019). https://doi.org/10.3102/0162373719848777

    Article  Google Scholar 

  10. Chi, M.T.H., et al.: Translating the ICAP theory of cognitive engagement into practice. Cogn. Sci. 42, 1777–1832 (2018). https://doi.org/10.1111/cogs.12626

    Article  Google Scholar 

  11. D’Mello, S., Olney, A., Williams, C., Hays, P.: Gaze tutor: a gaze-reactive intelligent tutoring system. Int. J. Hum. Comput. Stud. 70(5), 377–398 (2012). https://doi.org/10.1016/j.ijhcs.2012.01.004

    Article  Google Scholar 

  12. Beck, J.E., Chang, K.: Identifiability: a fundamental problem of student modeling. In: Conati, C., McCoy, K., Paliouras, G. (eds.) UM 2007. LNCS (LNAI), vol. 4511, pp. 137–146. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73078-1_17

    Chapter  Google Scholar 

  13. Corbett, A.T., Anderson, J.R.: Knowledge tracing: modeling the acquisition of procedural knowledge. User Model. User-Adap Inter. 4, 253–278 (1994). https://doi.org/10.1007/BF01099821

    Article  Google Scholar 

  14. Wang, G., Tang, Y., Li, J., Hu, X.: Modeling student learning behaviors in ALEKS: a two-layer hidden Markov modeling approach. In: Penstein Rosé, C., et al. (eds.) AIED 2018, Part II. LNCS (LNAI), vol. 10948, pp. 374–378. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93846-2_70

    Chapter  Google Scholar 

  15. Hu, Q., Rangwala, H.: Course-specific Markovian models for grade prediction. In: Phung, D., Tseng, V.S., Webb, G.I., Ho, B., Ganji, M., Rashidi, L. (eds.) PAKDD 2018, Part II. LNCS (LNAI), vol. 10938, pp. 29–41. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93037-4_3

    Chapter  Google Scholar 

  16. Baum, L.E., Petrie, T.: Statistical inference for probabilistic functions of finite state Markov chains. Ann. Math. Stat. 37(6), 1554–1563 (1966). https://doi.org/10.1214/aoms/1177699147

    Article  MathSciNet  MATH  Google Scholar 

  17. Viterbi, A.: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Trans. Inf. Theor. 13(2), 260–269 (1967). https://doi.org/10.1109/TIT.1967.1054010

    Article  MATH  Google Scholar 

  18. Akaike, H.: A new look at the statistical model identification. IEEE Trans. Autom. Control 19(6), 716–723 (1974). https://doi.org/10.1109/TAC.1974.1100705

    Article  MathSciNet  MATH  Google Scholar 

  19. Schwarz, G.: Estimating the dimension of a model. Ann. Stat. 6(2), 461–464 (1978). https://doi.org/10.1214/aos/1176344136

    Article  MathSciNet  MATH  Google Scholar 

  20. Christianini, N., Shawe-Taylor, J.: An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods. Cambridge University Press, Cambridge (2000). https://doi.org/10.1017/CBO9780511801389

  21. Altman, N.S.: An introduction to kernel and nearest-neighbor nonparametric regression. Am. Stat. 46(3), 175–185 (1992). https://doi.org/10.1080/00031305.1992.10475879

    Article  MathSciNet  Google Scholar 

  22. Collett, D.: Modeling Binary Data. Chapman and Hall, New York (2002)

    Book  Google Scholar 

  23. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. SSS, Springer, New York (2009). https://doi.org/10.1007/978-0-387-84858-7

    Book  MATH  Google Scholar 

  24. Xu, Y., Goodacre, R.: Splitting training and validation set: a comparative study of cross-validation, bootstrap and systematic sampling for estimating the generalization performance of supervised learning. J. Anal. Test. 2, 249–262 (2018). https://doi.org/10.1007/s41664-018-0068-2

    Article  Google Scholar 

Download references

Acknowledgment

This publication was supported by the Department of Graphics, Computer Vision and Digital Systems, under statue research project (Rau6, 2021), Silesian University of Technology (Gliwice, Poland). The authors would like to thank for involvement in data collection especially to Prof. J. Polańska, Prof. S. Deorowicz, Prof. K. Simiński, Dr. F. Binczyk, Dr. A. Papież and Dr. J. Żyła.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ewa Lach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lach, E., Grzechca, D., Polański, A., Rutkowski, J., Staniszewski, M. (2021). Analysis of Semestral Progress in Higher Technical Education with HMM Models. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12744. Springer, Cham. https://doi.org/10.1007/978-3-030-77967-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77967-2_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77966-5

  • Online ISBN: 978-3-030-77967-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics