Skip to main content

Reversed Correlation-Based Pairwised EEG Channel Selection in Emotional State Recognition

  • Conference paper
  • First Online:
Computational Science – ICCS 2021 (ICCS 2021)

Abstract

Emotions play an important role in everyday life and contribute to physical and emotional well-being. They can be identified by verbal or non-verbal signs. Emotional states can be also detected by electroencephalography (EEG signals). However, efficient information retrieval from the EEG sensors is a difficult and complex task due to noise from the internal and external artifacts and overlapping signals from different electrodes. Therefore, the appropriate electrode selection and discovering the brain parts and electrode locations that are most or least correlated with different emotional states is of great importance. We propose using reversed correlation-based algorithm for intra-user electrode selection, and the inter-subject subset analysis to establish electrodes least correlated with emotions for all users. Moreover, we identified subsets of electrodes most correlated with emotional states. The proposed method has been verified by experiments done on the DEAP dataset. The obtained results have been evaluated regarding the recognition of two emotions: valence and arousal. The experiments showed that the appropriate reduction of electrodes has no negative influence on emotion recognition. The differences between errors for recognition based on all electrodes and the selected subsets were not statistically significant. Therefore, where appropriate, reducing the number of electrodes may be beneficial in terms of collecting less data, simplifying the EEG analysis, and improving interaction problems without recognition loss.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nesse, R.M., Ellsworth, P.C.: Evolution, emotions, and emotional disorders. Am. Psychol. 64(2), 129–139 (2009)

    Article  Google Scholar 

  2. Petrantonakis, P., Hadjileontiadis, L.: Emotion recognition from EEG using higher order crossings. IEEE Trans. Inf Technol. Biomed. 14(2), 186–197 (2010)

    Article  Google Scholar 

  3. Masruroh, A.H., Imah, E.M., Rahmawati, E.: Classification of emotional state based on EEG signal using AMGLVQ. Procedia Comput. Sci. 157, 552–559 (2019). https://doi.org/10.1016/j.procs.2019.09.013

    Article  Google Scholar 

  4. Topalidou, A., Ali, N.: Infrared emotions and behaviours: thermal imaging in psychology. Int. J. Prenat. Life Sci. 1(01), 65–70 (2017). https://doi.org/10.24946/IJPLS

    Article  Google Scholar 

  5. Koelstra, S., et al.: DEAP: a database for emotion analysis; using physiological signals. IEEE Trans. Affect. Comput. 3(1), 18–31 (2012)

    Article  Google Scholar 

  6. Shu, L., Xie, J., Yang, M., Li, Z., Liao, D., et al.: A review of emotion recognition using physiological signals. Sensors 18(7), 2074 (2018)

    Google Scholar 

  7. Maswanganyi, C., Owolawi, Ch., Tu, P., Du, S.: overview of artifacts detection and elimination methods for BCI using EEG. In: 3rd IEEE International Conference on Image, Vision and Computing (2018)

    Google Scholar 

  8. Baig, M.Z., Aslam, N., Shum, H.P.H.: Filtering techniques for channel selection in motor imagery EEG applications: a survey. Artif. Intell. Rev. 53(2), 1207–1232 (2019). https://doi.org/10.1007/s10462-019-09694-8

    Article  Google Scholar 

  9. Nakisa, B., Rastgoo, M.N., Tjondronegoro, D., Chandran, V.: Evolutionary computation algorithms for feature selection of EEG-based emotion recognition using mobile sensors. Expert Syst. Appl. 93, 143–155 (2018)

    Article  Google Scholar 

  10. Lahiri, R., Rakshit, P., Konar, A.: Evolutionary perspective for optimal selection of EEG electrodes and features. Biomed. Signal Process. Control 36, 113–137 (2017)

    Article  Google Scholar 

  11. Fidalgo, T.M., Morales-Quezada, L., Muzy, G.S., Chiavetta, N.M., Mendonca, M.E., Santana, M.V., et al.: Biological markers in non-invasive brain stimulation trials in major depressive disorder: a systematic review. Nat. Inst. Health J. ECT 30(1), 47 (2014)

    Google Scholar 

  12. Li, X., Song, D., Zhang, P., Zhang, Y., Hou, Y., Hu, B.: Exploring EEG features in cross-subject emotion recognition. Front. Neurosci. 12(162), (2018)

    Google Scholar 

  13. Wosiak, A., Zakrzewska, D.: Integrating correlation-based feature selection and clustering for improved cardiovascular disease diagnosis. Complexity 250706, (2018). https://doi.org/10.1155/2018/2520706

  14. Wosiak, A., Dura, A.: Hybrid method of automated EEG signals selection using reversed correlation algorithm for improved classification of emotions. Sensors 20, 7083 (2020)

    Article  Google Scholar 

  15. Ekman, P., et al.: Universals and cultural differences in the judgments of facial expressions of emotion. J. Pers. Soc. Psychol. 53(4), 712–717 (1987)

    Google Scholar 

  16. Parrott, W.G.: Emotions in Social Psychology: Essential Readings. Psychology Press, Amsterdam (2001)

    Google Scholar 

  17. Plutchik, R.: The nature of Emotions: Human emotions have deep evolutionary roots, a fact that may explain their complexity and provide tools for clinical practice. Am. Sci. 89, 344–350 (2001)

    Article  Google Scholar 

  18. Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161–1178 (1980)

    Article  Google Scholar 

  19. Silton, R.L., Kahrilas, I.J., Skymba, H.V., Smith, J., Bryant, F.B., Heller, W.: Regulating positive emotions: implications for promoting well-being in individuals with depression. Emotion 20(1), 93–97 (2020). https://doi.org/10.1037/emo0000675

    Article  Google Scholar 

  20. Jaušovec, N., Jaušovec, K.: EEG activity during the performance of complex mental problems. Int. J. Psychophysiol. 36(1), 73–88 (2000)

    Article  Google Scholar 

  21. Tong, L., Zhao, J., Wenli, F.: Emotion recognition and channel selection based on EEG Signal. In: Proceedings of the 11th International Conference on Intelligent Computation Technology and Automation, Changsha, China, pp. 101–105 (2018)

    Google Scholar 

  22. Curran, E.A., Stokes, M.J.: Learning to control brain activity: a review of the production and control of EEG components for driving brain-computer interface (BCI) systems. Brain Cogn. 51(3), 326–336 (2003). https://doi.org/10.1016/S0278-2626(03)00036-8

    Article  Google Scholar 

  23. Alexander, R., Aragón, O.R., Bookwala, J., Cherbuin, N., Gatt, J.M., Kahrilas, I.J., et al.: The neuroscience of positive emotions and affect: implications for cultivating happiness and wellbeing. Neurosci. Biobehav. Rev. 121, 220–249 (2021)

    Google Scholar 

  24. Cromheeke, S., Mueller, S.C.: Probing emotional influences on cognitive control: an ALE meta-analysis of cognition emotion interactions. Brain Struct. Funct. 219(3), 995–1008 (2013). https://doi.org/10.1007/s00429-013-0549-z

    Article  Google Scholar 

  25. Kelley, N.J., Gallucci, A., Riva, P., Romero Lauro, L.J., Schmeichel, B.J.: Stimulating self-regulation: a review of non-invasive brain stimulation studies of goal-directed behavior. Front. Behav. Neurosci, 12, 337 (2019)

    Google Scholar 

  26. Anchieta da Silva, P., Dantas Alves Silva Ciaccia F.R.: Brain stimulation system and method to provide a sense of wellbeing. U.S. Patent Application No. 16/332,173 (2019)

    Google Scholar 

  27. Yuvaraj, R., Murugappan, M., Ibrahim, N.M., Omar, M.I., Sundaraj, K., Mohamad, K., et al.: Emotion classification in Parkinson’s disease by higher-order spectra and power spectrum features using EEG signals: a comparative study. J. Integr. Neurosci. 13(01), 89–120 (2014)

    Article  Google Scholar 

  28. Garcia-Moreno, F.M., Bermudez-Edo, M., Garrido, J.L., Rodriguez-Fortiz, M.J.: Reducing response time in motor imagery using a headband and deep learning. Sensors 20, 6730 (2020). https://doi.org/10.3390/s20236730

    Article  Google Scholar 

  29. Arevalillo-Herráez, M., Cobos, M., Roger, S., García-Pineda, M.: Combining inter-subject modeling with a subject-based data transformation to improve affect recognition from EEG signals. Sensors 19(13), 2999 (2019)

    Article  Google Scholar 

  30. Zheng, W.L., Liu, W., Lu, Y., Lu, B.L., Cichocki, A.: Emotion meter: a multimodal framework for recognizing human emotions. IEEE Trans. Cybern. (2018). https://doi.org/10.1109/TCYB.2018.2797176

    Article  Google Scholar 

  31. Coan, J.A., Allen, J.J.: Frontal EEG asymmetry as a moderator and mediator of emotion. Biol. Psychol. 67(1–2), 7–50 (2004)

    Article  Google Scholar 

  32. Lu, H., Liu, Q.S.: Serotonin in the frontal cortex: a potential therapeutic target for neurological disorders. Biochem. Pharmacol. (2016). https://doi.org/10.4172/2167-0501.1000e184

    Article  Google Scholar 

  33. Li, X., Hu, B., Sun, S., Cai, H.: EEG-based mild depressive detection using feature selection methods and classifiers. Elsevier (2016). https://doi.org/10.1016/j.cmpb.2016.08.010

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agnieszka Wosiak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dura, A., Wosiak, A., Stasiak, B., Wojciechowski, A., Rogowski, J. (2021). Reversed Correlation-Based Pairwised EEG Channel Selection in Emotional State Recognition. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12744. Springer, Cham. https://doi.org/10.1007/978-3-030-77967-2_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77967-2_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77966-5

  • Online ISBN: 978-3-030-77967-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics