Skip to main content

Side Effect Alerts Generation from EHR in Polish

  • Conference paper
  • First Online:
Computational Science – ICCS 2021 (ICCS 2021)

Abstract

The paper addresses the problem of extending an existing and widely used program for Polish public healthcare with a function for detecting possible occurrences of drug side effects. The task is performed in two steps. First, we extract information that binds names of drugs with side effects and their frequency. In the next step, we look for similar phrases in the list of side effect phrases. For all words in phrases, we use Polish Wordnet to find similar ones, and check if phrases with replaced words exist in the list. For long side effect phrases, which never occur in patient records, we look for simpler internal side effect phrases to generate alarms. Finally, we evaluate to what extent this action increases the efficiency of side effect alarms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    brak ‘lack’ is handled differently.

References

  1. Baker, D.: Medication alert fatigue: The potential for compromised patient safety. Hospital Pharmacy - HOSP PHARM 44, June 2009. https://doi.org/10.1310/hpj4406-460

  2. Chapman, W., Bridewell, W., Hanbury, P., Cooper, G., Buchanan, B.: A simple algorithm for identifying negated findings and diseases in discharge summaries. J. Biomed. Inf. 34(5), 301–310 (2001). https://doi.org/10.1006/jbin.2001.1029

  3. Cho, I., Kim, J., Kim, J.H., Kim, H.Y., Kim, Y.: Design and implementation of a standards-based interoperable clinical decision support architecture in the context of the Korean EHR. Int. J. Med. Inf. 79(9), 611–622 (2010)

    Google Scholar 

  4. Czerw, A., Fronczak, A., Witczak, K., Juszczyk, G.: Implementation of electronic health records in Polish outpatient health care clinics - starting point, progress, problems, and forecasts. Ann. Agric. Environ. Med. 23(2), 329–334 (2016)

    Google Scholar 

  5. Dziob, A., Piasecki, M., Rudnicka, E.: plwordnet 4.1—a linguistically motivated, corpus-based bilingual resource. In: Fellbaum, C., Vossen, P., Rudnicka, E., Maziarz, M., Piasecki, M. (eds.) Proceedings of the 10th Global WordNet Conference: July 23–27, 2019, Wroclaw (Poland). pp. 353–362. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław (2019)

    Google Scholar 

  6. Feng, C., Le, D., McCoy, A.: Using electronic health records to identify adverse drug events in ambulatory care: a systematic review. Appl. Clin. Inf. 10, 123–128 (2019). https://doi.org/10.1055/s-0039-1677738

  7. Gurulingappa, H., Rajput, A.M., Roberts, A., Fluck, J., Hofmann-Apitius, M., Toldo, L.: Development of a benchmark corpus to support the automatic extraction of drug-related adverse effects from medical case reports. J. Biomed. Inf. 45(5), 885–892 (2012)

    Google Scholar 

  8. Hammar, T., Hellström, L., Ericson, L.: The use of a decision support system in swedish pharmacies to identify potential drug-related problems-effects of a national intervention focused on reviewing elderly patients’ prescriptions. Pharmacy: J. Pharmacy Educ. Practice 8 (2020)

    Google Scholar 

  9. Harpaz, R., Callahan, A., Tamang, S., et al.: Text mining for adverse drug events: the promise, challenges, and state of the art. Drug Safety 37, 777–790 (2014)

    Google Scholar 

  10. Henry, S., Buchan, K., Filannino, M., Stubbs, A., Uzuner, O.: 2018 n2c2 shared task on adverse drug events and medication extraction in electronic health records. J. Am. Med. Inf. Assoc. JAMIA 27(1), 3–12 (2020)

    Google Scholar 

  11. Huang, K., Geller, J., Halper, M., Perl, Y., Xu, J.: Using WordNet synonym substitution to enhance UMLS source integration. Artif. Intell. Med. 46(2), 97–109 (2009). https://doi.org/10.1016/j.artmed.2008.11.008

  12. Kang, N., Singh, B., Bui, Q.C., Afzal, Z., van Mulligen, E.M., Kors, J.A.: Knowledge-based extraction of adverse drug events from biomedical text. BMC Bioinform. 15, 1–8 (2014)

    Google Scholar 

  13. Kieraś, W., Kobyliński, Ł., Ogrodniczuk, M.: Korpusomat — a tool for creating searchable morphosyntactically tagged corpora. Comput. Methods Sci. Technol. 24(1), 21–27 (2018)

    Google Scholar 

  14. Lemmen, C., Woopen, C., Stock, S.: Systems medicine 2030: a Delphi study on implementation in the German healthcare system. Health Policy 125(1), 104–114 (2021)

    Google Scholar 

  15. Lindberg, D., Humphreys, B., McCray, A.: The unified medical language system. Yearbook Med. Inf 1, 41–51 (1993)

    Google Scholar 

  16. Marciniak, M., Mykowiecka, A., Rychlik, P.: TermoPL — a flexible tool for terminology extraction. In: Proceedings of LREC pp. 2278–2284. ELRA, Portorož, Slovenia (2016)

    Google Scholar 

  17. Mikolov, T., Sutskever, I., Chen, K., Corrado, G., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in neural information processing systems. pp. 3111–3119 (2013)

    Google Scholar 

  18. Mykowiecka, A., Marciniak, M., Kupść, A.: Rule-based information extraction from patients’ clinical data. J. Biomed. Inf. 42(5), 923–936 (2009)

    Google Scholar 

  19. Page, N., Baysari, M., Westbrook, J.: A systematic review of the effectiveness of interruptive medication prescribing alerts in hospital CPOE systems to change prescriber behavior and improve patient safety. Int. J. Med. Inform. 105, 22–30 (2017)

    Google Scholar 

  20. Piasecki, M., Szpakowicz, S., Broda, B.: A Wordnet from the Ground Up. Oficyna Wydawnicza Politechniki Wroclawskiej, Wroclaw (2009)

    Google Scholar 

  21. Rahmner, P., Eiermann, B., Korkmaz, S., Gustafsson, L., M, G., Maxwell, S., Eichle, H., Vég, A.: Physicians’ reported needs of drug information at point of care in Sweden. Br. J. Clin. Pharmacol. 73(1), 115–125 (2012)

    Google Scholar 

  22. Roberts, K., Demner-Fushman, D., Tonning, J.M.: Overview of the TAC 2017 adverse reaction extraction from drug labels track. In: Proceedings of the 2017 Text Analysis Conference, TAC 2017, Gaithersburg, Maryland, USA, November 13–14, 2017. NIST (2017)

    Google Scholar 

  23. Saxena, K., Lung, B.R., Becker, J.R.: Improving patient safety by modifying provider ordering behavior using alerts (CDSS) in CPOE system. Annual Symposium proceedings. AMIA Symposium 2011, 1207–1216 (2011)

    Google Scholar 

  24. Scott, I.A., Pillans, P.I., Barras, M., Morris, C.: Using EMR-enabled computerized decision support systems to reduce prescribing of potentially inappropriate medications: a narrative review. Therapeutic Adv. Drug Safety 9(9), 559–573 (2018)

    Google Scholar 

  25. Stearns, M.Q., Price, C., Spackman, K., Wang, A.Y.: Snomed clinical terms: overview of the development process and project status. In: Proceedings of the AMIA Symposium, pp. 662–6 (2001)

    Google Scholar 

  26. Sutton, R.T., Pincock, D., Baumgart, D.C., Sadowski, D.C., Fedorak, R.N., Kroeker, K.I.: An overview of clinical decision support systems: benefits, risks, and strategies for success. Digital Med. 3(17), 1–10 (2020)

    Google Scholar 

  27. Ubysz, D., Fryzowska-Chrobot, I., Giermaziak, W.: Baza Tez-Mesh jako efektywne narzędzie do opracowania rzeczowego i wyszukiwania informacji z zakresu medycyny i nauk pokrewnych. Zarządzanie Biblioteką 11(1), 59–73 (2019)

    Google Scholar 

  28. van Mulligen, E.M., Fourrier-Reglat, A., Gurwitz, D., Molokhia, M., Nieto, A., Trifiro, G., Kors, J.A., Furlong, L.I.: The EU-ADR corpus: Annotated drugs, diseases, targets, and their relationships. J. Biomed. Inf. 45(5), 879–884 (2012)

    Google Scholar 

  29. Waszczuk, J.: Harnessing the CRF complexity with domain-specific constraints. The case of morphosyntactic tagging of a highly inflected language. In: Proceedings of COLING pp. 2789–2804 (2012)

    Google Scholar 

  30. Woliński, M.: Morfeusz reloaded. In: Calzolari, N., et al.(eds.) Proceedings of the Ninth International Conference on Language Resources and Evaluation, LREC 2014, pp. 1106–1111. ELRA, ReykjavÍk, Iceland (2014)

    Google Scholar 

  31. Woliński, M., Saloni, Z., Wołosz, R., Gruszczyński, W., Skowrońska, D., Bronk, Z.: Słownik gramatyczny języka polskiego, wyd. IV (2020). http://sgjp.pl

Download references

Acknowledgments

This work was financially supported by the National Centre for Research and Development in Poland, Grant POIR.01.01.01-00-0328/17.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Małgorzata Marciniak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jaworski, W., Marciniak, M., Mykowiecka, A. (2021). Side Effect Alerts Generation from EHR in Polish. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12744. Springer, Cham. https://doi.org/10.1007/978-3-030-77967-2_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77967-2_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77966-5

  • Online ISBN: 978-3-030-77967-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics