Skip to main content

Generic Case of Leap-Frog Algorithm for Optimal Knots Selection in Fitting Reduced Data

  • Conference paper
  • First Online:
Computational Science – ICCS 2021 (ICCS 2021)

Abstract

The problem of fitting multidimensional reduced data \(\mathcal{M}_n\) is discussed here. The unknown interpolation knots \(\mathcal{T}\) are replaced by optimal knots which minimize a highly non-linear multivariable function \(\mathcal{J}_0\). The numerical scheme called Leap-Frog Algorithm is used to compute such optimal knots for \(\mathcal{J}_0\)via the iterative procedure based in each step on single variable optimization of \(\mathcal{J}_0^{(k,i)}\). The discussion on conditions enforcing unimodality of each \(\mathcal{J}_0^{(k,i)}\) is also supplemented by illustrative examples both referring to the generic case of Leap-Frog. The latter forms a new insight on fitting reduced data and modelling interpolants of \(\mathcal{M}_n\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. de Boor, C.: A Practical Guide to Splines, 2nd edn. Springer, New York (2001). https://www.springer.com/gp/book/9780387953663

  2. Kozera, R., Noakes, L.: Optimal knots selection for sparse reduced data. In: Huang, F., Sugimoto, A. (eds.) PSIVT 2015. LNCS, vol. 9555, pp. 3–14. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30285-0_1

    Chapter  Google Scholar 

  3. Kozera, R., Noakes, L.: Non-linearity and non-convexity in optimal knots selection for sparse reduced data. In: Gerdt, V.P., Koepf, W., Seiler, W.M., Vorozhtsov, E.V. (eds.) CASC 2017. LNCS, vol. 10490, pp. 257–271. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66320-3_19

    Chapter  MATH  Google Scholar 

  4. Kozera, R., Noakes, L., Wilkołazka, M.: Parameterizations and Lagrange cubics for fitting multidimensional data. In: Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol. 12138, pp. 124–140. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50417-5_10

    Chapter  Google Scholar 

  5. Kozera, R., Noakes L., Wilkołazka, M.: Exponential parameterization to fit reduced data. Appl. Math. Comput. 391(C), 125645 (2021). https://doi.org/10.1016/j.amc.2020.125645

  6. Kozera, R., Wiliński, A.: Fitting dense and sparse reduced data. In: Pejaś, J., El Fray, I., Hyla, T., Kacprzyk, J. (eds.) ACS 2018. AISC, vol. 889, pp. 3–17. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-03314-9_1

    Chapter  Google Scholar 

  7. Kuznetsov, E.B., Yakimovich A.Y.: The best parameterization for parametric interpolation. J. Comput. Appl. Math. 191(2), 239–245 (2006). https://core.ac.uk/download/pdf/81959885.pdf

  8. Kvasov, B.I.: Methods of Shape-Preserving Spline Approximation. World Scientific Pub., Singapore (2000). https://doi.org/10.1142/4172

  9. Matebese, B., Withey, D., Banda, M.K.: Modified Newton’s method in the Leapfrog method for mobile robot path planning. In: Dash, S.S., Naidu, P.C.B., Bayindir, R., Das, S. (eds.) Artificial Intelligence and Evolutionary Computations in Engineering Systems. AISC, vol. 668, pp. 71–78. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-7868-2_7

    Chapter  Google Scholar 

  10. Noakes, L.: A global algorithm for geodesics. J. Aust. Math. Soc. Series A 65(1), 37–50 (1998). https://doi.org/10.1017/S1446788700039380

  11. Noakes, L., Kozera, R.: Nonlinearities and noise reduction in 3-source photometric stereo. J. Math. Imaging Vision 18(2), 119–127 (2003). https://doi.org/10.1023/A:1022104332058

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryszard Kozera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kozera, R., Noakes, L., Wiliński, A. (2021). Generic Case of Leap-Frog Algorithm for Optimal Knots Selection in Fitting Reduced Data. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12745. Springer, Cham. https://doi.org/10.1007/978-3-030-77970-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77970-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77969-6

  • Online ISBN: 978-3-030-77970-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics