Skip to main content

ELSA: Euler-Lagrange Skeletal Animations - Novel and Fast Motion Model Applicable to VR/AR Devices

  • Conference paper
  • First Online:
Book cover Computational Science – ICCS 2021 (ICCS 2021)

Abstract

Euler Lagrange Skeletal Animation (ELSA) is the novel and fast model for skeletal animation, based on the Euler Lagrange equations of motion and configuration and phase space notion. Single joint’s animation is an integral curve in the vector field generated by those PDEs. Considering the point in the phase space belonging to the animation at current time, by adding the vector pinned to this point and multiplied by the elapsed time, one can designate the new point in the phase space. It defines the state, especially the position (or rotation) of the joint after this time elapses. Starting at time 0 and repeating this procedure N times, there is obtained the approximation, and if the \(N\rightarrow \infty \) the integral curve itself. Applying above, to all joint in the skeletal model constitutes ELSA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C3D.ORG - The biomechanics standard file format. https://www.c3d.org/

  2. CS 15-464/16-464 Technical Animation. http://graphics.cs.cmu.edu/nsp/course/15-464/Fall05/assignments/StartupCodeDescription.html

  3. Abu Rumman, N., Fratarcangeli, M.: Position-based skinning for soft articulated characters. Comput. Graph. Forum 34(6), 240–250 (2015). https://doi.org/10.1111/cgf.12533

    Article  Google Scholar 

  4. Ali Khan, M., Sarfraz, M.: Motion tweening for skeletal animation by cardinal spline. In: Abd Manaf, A., Sahibuddin, S., Ahmad, R., Mohd Daud, S., El-Qawasmeh, E. (eds.) Informatics Engineering and Information Science, CCIS, pp. 179–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25483-3-14

  5. Asraf, S.M.H., Abdullasim, N., Romli, R.: Hybrid animation: implementation of motion capture. IOP Conf. Ser. Mater. Sci. Eng. 767, 012065 (2020). https://doi.org/10.1088/1757-899x/767/1/012065

  6. Baran, I., Popović, J.: Automatic rigging and animation of 3d characters. ACM Trans. Graph. 26(3), 72-es (2007). https://doi.org/10.1145/1276377.1276467

  7. Blake, A.: Design of mechanical joints. No. 42 in Mechanical engineering, M. Dekker, New York (1985)

    Google Scholar 

  8. Burtnyk, N., Wein, M.: Computer-generated key-frame animation. J. SMPTE 80(3), 149–153 (1971). https://doi.org/10.5594/J07698

    Article  Google Scholar 

  9. Castro, G.G., Athanasopoulos, M., Ugail, H.: Cyclic animation using partial differential equations. Vis. Comput. 26(5), 325–338 (2010). https://doi.org/10.1007/s00371-010-0422-5. Company: Springer Distributor: Springer Institution: Springer Label: Springer Number: 5 Publisher: Springer-Verlag

  10. Catmull, E.: The problems of computer-assisted animation 12(3), 348–353 (1978). http://doi.acm.org/10.1145/800248.807414

  11. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 2. Wiley-VCH, Weinheim (1989). oCLC: 609855380

    Google Scholar 

  12. Dai, H., Cai, B., Song, J., Zhang, D.: Skeletal animation based on BVH motion data. In: 2010 2nd International Conference on Information Engineering and Computer Science, Wuhan, China, pp. 1–4. IEEE, December 2010. https://doi.org/10.1109/ICIECS.2010.5678292

  13. Evans, L.C.: Partial differential equations. No. v. 19 in Graduate studies in mathematics, American Mathematical Society, Providence, R.I (1998)

    Google Scholar 

  14. Geroch, M.S.: Motion capture for the rest of us. J. Comput. Sci. Coll. 19(3), 157–164 (2004)

    Google Scholar 

  15. Haarbach, A., Birdal, T., Ilic, S.: Survey of higher order rigid body motion interpolation methods for keyframe animation and continuous-time trajectory estimation. In: 2018 International Conference on 3D Vision (3DV), Verona, pp. 381–389. IEEE, September 2018. https://doi.org/10.1109/3DV.2018.00051

  16. Hand, L.N., Finch, J.D.: Analytical Mechanics. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  17. Hoffman, G., Ju, W.: Designing robots with movement in mind. J. Hum. Robot Interact. 3(1), 89 (2014). https://doi.org/10.5898/JHRI.3.1.Hoffman

    Article  Google Scholar 

  18. Jain, A., Rodriguez, G.: Diagonalized dynamics of robot manipulators. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, San Diego, CA, USA, pp. 334–339. IEEE Computer Society Press (1994). https://doi.org/10.1109/ROBOT.1994.351273

  19. Jain, A., Rodriguez, G.: Diagonalized Lagrangian robot dynamics. IEEE Trans. Robot. Autom. 11(4), 571–584 (1995). https://doi.org/10.1109/70.406941

    Article  Google Scholar 

  20. Jordan, D.W., Smith, P.: Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers, 4th edn. Oxford University Press, Oxford (2007)

    Google Scholar 

  21. Ali Khan, M., Sarfraz, M.: Motion tweening for skeletal animation by cardinal spline. In: Abd Manaf, A., Sahibuddin, S., Ahmad, R., Mohd Daud, S., El-Qawasmeh, E. (eds.) ICIEIS 2011. CCIS, vol. 254, pp. 179–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25483-3_14

    Chapter  Google Scholar 

  22. Kozlowski, K.: Standard and diagonalized Lagrangian dynamics: a comparison. In: Proceedings of 1995 IEEE International Conference on Robotics and Automation, Nagoya, Japan, vol. 3, pp. 2823–2828. IEEE (1995). https://doi.org/10.1109/ROBOT.1995.525683

  23. Krayevoy, V., Sheffer, A.: Boneless motion reconstruction. In: ACM SIGGRAPH 2005 Sketches, SIGGRAPH 2005, pp. 122-es. Association for Computing Machinery, New York (2005). https://doi.org/10.1145/1187112.1187259

  24. Kuboyama, T.: Matching and learning in trees. Doctoral dissertation (2007)

    Google Scholar 

  25. Kuo, C., Liang, Z., Fan, Y., Blouin, J.S., Pai, D.K.: Creating impactful characters: correcting human impact accelerations using high rate IMUs in dynamic activities. ACM Trans. Graph. 38(4) (2019). https://doi.org/10.1145/3306346.3322978

  26. Le Naour, T., Courty, N., Gibet, S.: Skeletal mesh animation driven by few positional constraints. Comput. Anim. Virtual Worlds 30(3–4) (2019). https://doi.org/10.1002/cav.1900

  27. Levi, Z., Gotsman, C.: Smooth rotation enhanced As-Rigid-As-Possible mesh animation. IEEE Trans. Visual Comput. Graphics 21(2), 264–277 (2015). https://doi.org/10.1109/TVCG.2014.2359463

    Article  Google Scholar 

  28. Li, J., Lu, G., Ye, J.: Automatic skinning and animation of skeletal models. Vis. Comput. 27(6), 585–594 (2011). https://doi.org/10.1007/s00371-011-0585-8. Company: Springer Distributor: Springer Institution: Springer Label: Springer Number: 6 Publisher: Springer-Verlag

  29. Lobão, A., Evangelista, B., Leal de Farias, J., Grootjans, R.: Skeletal animation. In: Beginning XNA 3.0 Game Programming, pp. 299–336. Apress (2009). https://doi.org/10.1007/978-1-4302-1818-0-12

  30. Mandery, C., Terlemez, O., Do, M., Vahrenkamp, N., Asfour, T.: The KIT whole-body human motion database. In: 2015 International Conference on Advanced Robotics (ICAR), Istanbul, Turkey, pp. 329–336. IEEE, July 2015. https://doi.org/10.1109/ICAR.2015.7251476

  31. Mills, P.M., Morrison, S., Lloyd, D.G., Barrett, R.S.: Repeatability of 3D gait kinematics obtained from an electromagnetic tracking system during treadmill locomotion. J. Biomech. 40(7), 1504–1511 (2007). https://doi.org/10.1016/j.jbiomech.2006.06.017

    Article  Google Scholar 

  32. Min, J., Chen, Y.L., Chai, J.: Interactive generation of human animation with deformable motion models. ACM Trans. Graph. 29(1), 1–12 (2009). https://doi.org/10.1145/1640443.1640452

    Article  Google Scholar 

  33. Mukundan, R.: Skeletal animation. In: Advanced Methods in Computer Graphics: With examples in OpenGL, pp. 53–76. Springer, London (2012). https://doi.org/10.1007/978-1-4471-2340-8-4

  34. Muller, M., Roder, T., Clausen, M., Eberhardt, B., Kruger, B., Weber, A.: Documentation Mocap Database HDM05, p. 34

    Google Scholar 

  35. Parent, R.: Computer Animation: Algorithms and Techniques. The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling. Morgan Kaufmann Publishers, San Francisco (2002)

    Google Scholar 

  36. Sepahi-Boroujeni, S., Mayer, J., Khameneifar, F.: Repeatability of on-machine probing by a five-axis machine tool. Int. J. Mach. Tools Manuf. 152 (2020). https://doi.org/10.1016/j.ijmachtools.2020.103544

  37. Sito, T., Whitaker, H.: Timing for Animation, 2nd edn. Focal, Oxford (2009). oCLC: 705760367

    Google Scholar 

  38. Spanlang, B., Navarro, X., Normand, J.M., Kishore, S., Pizarro, R., Slater, M.: Real time whole body motion mapping for avatars and robots. In: Proceedings of the 19th ACM Symposium on Virtual Reality Software and Technology - VRST 2013, p. 175. ACM Press, Singapore (2013). https://doi.org/10.1145/2503713.2503747

  39. Steinwender, G., Saraph, V., Scheiber, S., Zwick, E.B., Uitz, C., Hackl, K.: Intrasubject repeatability of gait analysis data in normal and spastic children. Clin. Biomech. 15(2), 134–139 (2000). https://doi.org/10.1016/S0268-0033(99)00057-1

    Article  Google Scholar 

  40. Stoll, C., Aguiar, E.D., Theobalt, C., Seidel, H.: A volumetric approach to interactive shape editing. In: Saarbrücken: Max-Planck-Institut für Informatik (2007)

    Google Scholar 

  41. Sujar, A., Casafranca, J.J., Serrurier, A., Garcia, M.: Real-time animation of human characters’ anatomy. Comput. Graph. 74, 268–277 (2018). https://doi.org/10.1016/j.cag.2018.05.025

    Article  Google Scholar 

  42. Tupling, S.J., Pierrynowski, M.R.: Use of cardan angles to locate rigid bodies in three-dimensional space. Med. Biol. Eng. Comput. 25(5), 527–532 (1987). https://doi.org/10.1007/BF02441745. Company: Springer Distributor: Springer Institution: Springer Label: Springer Number: 5 Publisher: Kluwer Academic Publishers

  43. Wang, J., Lyu, K., Xue, J., Gao, P., Yan, Y.: A markerless body motion capture system for character animation based on multi-view cameras. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8558–8562 (2019). https://doi.org/10.1109/ICASSP.2019.8683506

  44. White, R., Agouris, I., Selbie, R., Kirkpatrick, M.: The variability of force platform data in normal and cerebral palsy gait. Clin. Biomech. 14(3), 185–192 (1999). https://doi.org/10.1016/S0268-0033(99)80003-5

    Article  Google Scholar 

  45. Zhao, Y., Liu, J.: Volumetric subspace mesh deformation with structure preservation. Comput. Animat. Virtual Worlds 23(5), 519–532 (2012). https://doi.org/10.1002/cav.1488

    Article  Google Scholar 

  46. Zhou, F., Luo, X., Huang, H.: Application of 4-point subdivision to generate in-between frames in skeletal animation. In: Technologies for E-Learning and Digital Entertainment, LNCS, vol. 3942, pp. 1080–1084. Springer, Heidelberg (2006). https://doi.org/10.1007/11736639-134

  47. Zollhöfer, M., Sert, E., Greiner, G., Süßmuth, J.: GPU based ARAP deformation using volumetric lattices. In: Eurographics (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamil Wereszczyński .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wereszczyński, K., Michalczuk, A., Foszner, P., Golba, D., Cogiel, M., Staniszewski, M. (2021). ELSA: Euler-Lagrange Skeletal Animations - Novel and Fast Motion Model Applicable to VR/AR Devices. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12746. Springer, Cham. https://doi.org/10.1007/978-3-030-77977-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77977-1_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77976-4

  • Online ISBN: 978-3-030-77977-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics