Abstract
Euler Lagrange Skeletal Animation (ELSA) is the novel and fast model for skeletal animation, based on the Euler Lagrange equations of motion and configuration and phase space notion. Single joint’s animation is an integral curve in the vector field generated by those PDEs. Considering the point in the phase space belonging to the animation at current time, by adding the vector pinned to this point and multiplied by the elapsed time, one can designate the new point in the phase space. It defines the state, especially the position (or rotation) of the joint after this time elapses. Starting at time 0 and repeating this procedure N times, there is obtained the approximation, and if the \(N\rightarrow \infty \) the integral curve itself. Applying above, to all joint in the skeletal model constitutes ELSA.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
C3D.ORG - The biomechanics standard file format. https://www.c3d.org/
CS 15-464/16-464 Technical Animation. http://graphics.cs.cmu.edu/nsp/course/15-464/Fall05/assignments/StartupCodeDescription.html
Abu Rumman, N., Fratarcangeli, M.: Position-based skinning for soft articulated characters. Comput. Graph. Forum 34(6), 240–250 (2015). https://doi.org/10.1111/cgf.12533
Ali Khan, M., Sarfraz, M.: Motion tweening for skeletal animation by cardinal spline. In: Abd Manaf, A., Sahibuddin, S., Ahmad, R., Mohd Daud, S., El-Qawasmeh, E. (eds.) Informatics Engineering and Information Science, CCIS, pp. 179–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25483-3-14
Asraf, S.M.H., Abdullasim, N., Romli, R.: Hybrid animation: implementation of motion capture. IOP Conf. Ser. Mater. Sci. Eng. 767, 012065 (2020). https://doi.org/10.1088/1757-899x/767/1/012065
Baran, I., Popović, J.: Automatic rigging and animation of 3d characters. ACM Trans. Graph. 26(3), 72-es (2007). https://doi.org/10.1145/1276377.1276467
Blake, A.: Design of mechanical joints. No. 42 in Mechanical engineering, M. Dekker, New York (1985)
Burtnyk, N., Wein, M.: Computer-generated key-frame animation. J. SMPTE 80(3), 149–153 (1971). https://doi.org/10.5594/J07698
Castro, G.G., Athanasopoulos, M., Ugail, H.: Cyclic animation using partial differential equations. Vis. Comput. 26(5), 325–338 (2010). https://doi.org/10.1007/s00371-010-0422-5. Company: Springer Distributor: Springer Institution: Springer Label: Springer Number: 5 Publisher: Springer-Verlag
Catmull, E.: The problems of computer-assisted animation 12(3), 348–353 (1978). http://doi.acm.org/10.1145/800248.807414
Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 2. Wiley-VCH, Weinheim (1989). oCLC: 609855380
Dai, H., Cai, B., Song, J., Zhang, D.: Skeletal animation based on BVH motion data. In: 2010 2nd International Conference on Information Engineering and Computer Science, Wuhan, China, pp. 1–4. IEEE, December 2010. https://doi.org/10.1109/ICIECS.2010.5678292
Evans, L.C.: Partial differential equations. No. v. 19 in Graduate studies in mathematics, American Mathematical Society, Providence, R.I (1998)
Geroch, M.S.: Motion capture for the rest of us. J. Comput. Sci. Coll. 19(3), 157–164 (2004)
Haarbach, A., Birdal, T., Ilic, S.: Survey of higher order rigid body motion interpolation methods for keyframe animation and continuous-time trajectory estimation. In: 2018 International Conference on 3D Vision (3DV), Verona, pp. 381–389. IEEE, September 2018. https://doi.org/10.1109/3DV.2018.00051
Hand, L.N., Finch, J.D.: Analytical Mechanics. Cambridge University Press, Cambridge (1998)
Hoffman, G., Ju, W.: Designing robots with movement in mind. J. Hum. Robot Interact. 3(1), 89 (2014). https://doi.org/10.5898/JHRI.3.1.Hoffman
Jain, A., Rodriguez, G.: Diagonalized dynamics of robot manipulators. In: Proceedings of the 1994 IEEE International Conference on Robotics and Automation, San Diego, CA, USA, pp. 334–339. IEEE Computer Society Press (1994). https://doi.org/10.1109/ROBOT.1994.351273
Jain, A., Rodriguez, G.: Diagonalized Lagrangian robot dynamics. IEEE Trans. Robot. Autom. 11(4), 571–584 (1995). https://doi.org/10.1109/70.406941
Jordan, D.W., Smith, P.: Nonlinear Ordinary Differential Equations: An Introduction for Scientists and Engineers, 4th edn. Oxford University Press, Oxford (2007)
Ali Khan, M., Sarfraz, M.: Motion tweening for skeletal animation by cardinal spline. In: Abd Manaf, A., Sahibuddin, S., Ahmad, R., Mohd Daud, S., El-Qawasmeh, E. (eds.) ICIEIS 2011. CCIS, vol. 254, pp. 179–188. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25483-3_14
Kozlowski, K.: Standard and diagonalized Lagrangian dynamics: a comparison. In: Proceedings of 1995 IEEE International Conference on Robotics and Automation, Nagoya, Japan, vol. 3, pp. 2823–2828. IEEE (1995). https://doi.org/10.1109/ROBOT.1995.525683
Krayevoy, V., Sheffer, A.: Boneless motion reconstruction. In: ACM SIGGRAPH 2005 Sketches, SIGGRAPH 2005, pp. 122-es. Association for Computing Machinery, New York (2005). https://doi.org/10.1145/1187112.1187259
Kuboyama, T.: Matching and learning in trees. Doctoral dissertation (2007)
Kuo, C., Liang, Z., Fan, Y., Blouin, J.S., Pai, D.K.: Creating impactful characters: correcting human impact accelerations using high rate IMUs in dynamic activities. ACM Trans. Graph. 38(4) (2019). https://doi.org/10.1145/3306346.3322978
Le Naour, T., Courty, N., Gibet, S.: Skeletal mesh animation driven by few positional constraints. Comput. Anim. Virtual Worlds 30(3–4) (2019). https://doi.org/10.1002/cav.1900
Levi, Z., Gotsman, C.: Smooth rotation enhanced As-Rigid-As-Possible mesh animation. IEEE Trans. Visual Comput. Graphics 21(2), 264–277 (2015). https://doi.org/10.1109/TVCG.2014.2359463
Li, J., Lu, G., Ye, J.: Automatic skinning and animation of skeletal models. Vis. Comput. 27(6), 585–594 (2011). https://doi.org/10.1007/s00371-011-0585-8. Company: Springer Distributor: Springer Institution: Springer Label: Springer Number: 6 Publisher: Springer-Verlag
Lobão, A., Evangelista, B., Leal de Farias, J., Grootjans, R.: Skeletal animation. In: Beginning XNA 3.0 Game Programming, pp. 299–336. Apress (2009). https://doi.org/10.1007/978-1-4302-1818-0-12
Mandery, C., Terlemez, O., Do, M., Vahrenkamp, N., Asfour, T.: The KIT whole-body human motion database. In: 2015 International Conference on Advanced Robotics (ICAR), Istanbul, Turkey, pp. 329–336. IEEE, July 2015. https://doi.org/10.1109/ICAR.2015.7251476
Mills, P.M., Morrison, S., Lloyd, D.G., Barrett, R.S.: Repeatability of 3D gait kinematics obtained from an electromagnetic tracking system during treadmill locomotion. J. Biomech. 40(7), 1504–1511 (2007). https://doi.org/10.1016/j.jbiomech.2006.06.017
Min, J., Chen, Y.L., Chai, J.: Interactive generation of human animation with deformable motion models. ACM Trans. Graph. 29(1), 1–12 (2009). https://doi.org/10.1145/1640443.1640452
Mukundan, R.: Skeletal animation. In: Advanced Methods in Computer Graphics: With examples in OpenGL, pp. 53–76. Springer, London (2012). https://doi.org/10.1007/978-1-4471-2340-8-4
Muller, M., Roder, T., Clausen, M., Eberhardt, B., Kruger, B., Weber, A.: Documentation Mocap Database HDM05, p. 34
Parent, R.: Computer Animation: Algorithms and Techniques. The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling. Morgan Kaufmann Publishers, San Francisco (2002)
Sepahi-Boroujeni, S., Mayer, J., Khameneifar, F.: Repeatability of on-machine probing by a five-axis machine tool. Int. J. Mach. Tools Manuf. 152 (2020). https://doi.org/10.1016/j.ijmachtools.2020.103544
Sito, T., Whitaker, H.: Timing for Animation, 2nd edn. Focal, Oxford (2009). oCLC: 705760367
Spanlang, B., Navarro, X., Normand, J.M., Kishore, S., Pizarro, R., Slater, M.: Real time whole body motion mapping for avatars and robots. In: Proceedings of the 19th ACM Symposium on Virtual Reality Software and Technology - VRST 2013, p. 175. ACM Press, Singapore (2013). https://doi.org/10.1145/2503713.2503747
Steinwender, G., Saraph, V., Scheiber, S., Zwick, E.B., Uitz, C., Hackl, K.: Intrasubject repeatability of gait analysis data in normal and spastic children. Clin. Biomech. 15(2), 134–139 (2000). https://doi.org/10.1016/S0268-0033(99)00057-1
Stoll, C., Aguiar, E.D., Theobalt, C., Seidel, H.: A volumetric approach to interactive shape editing. In: Saarbrücken: Max-Planck-Institut für Informatik (2007)
Sujar, A., Casafranca, J.J., Serrurier, A., Garcia, M.: Real-time animation of human characters’ anatomy. Comput. Graph. 74, 268–277 (2018). https://doi.org/10.1016/j.cag.2018.05.025
Tupling, S.J., Pierrynowski, M.R.: Use of cardan angles to locate rigid bodies in three-dimensional space. Med. Biol. Eng. Comput. 25(5), 527–532 (1987). https://doi.org/10.1007/BF02441745. Company: Springer Distributor: Springer Institution: Springer Label: Springer Number: 5 Publisher: Kluwer Academic Publishers
Wang, J., Lyu, K., Xue, J., Gao, P., Yan, Y.: A markerless body motion capture system for character animation based on multi-view cameras. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8558–8562 (2019). https://doi.org/10.1109/ICASSP.2019.8683506
White, R., Agouris, I., Selbie, R., Kirkpatrick, M.: The variability of force platform data in normal and cerebral palsy gait. Clin. Biomech. 14(3), 185–192 (1999). https://doi.org/10.1016/S0268-0033(99)80003-5
Zhao, Y., Liu, J.: Volumetric subspace mesh deformation with structure preservation. Comput. Animat. Virtual Worlds 23(5), 519–532 (2012). https://doi.org/10.1002/cav.1488
Zhou, F., Luo, X., Huang, H.: Application of 4-point subdivision to generate in-between frames in skeletal animation. In: Technologies for E-Learning and Digital Entertainment, LNCS, vol. 3942, pp. 1080–1084. Springer, Heidelberg (2006). https://doi.org/10.1007/11736639-134
Zollhöfer, M., Sert, E., Greiner, G., Süßmuth, J.: GPU based ARAP deformation using volumetric lattices. In: Eurographics (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Wereszczyński, K., Michalczuk, A., Foszner, P., Golba, D., Cogiel, M., Staniszewski, M. (2021). ELSA: Euler-Lagrange Skeletal Animations - Novel and Fast Motion Model Applicable to VR/AR Devices. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12746. Springer, Cham. https://doi.org/10.1007/978-3-030-77977-1_10
Download citation
DOI: https://doi.org/10.1007/978-3-030-77977-1_10
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-77976-4
Online ISBN: 978-3-030-77977-1
eBook Packages: Computer ScienceComputer Science (R0)