Skip to main content

Improving Wildfire Simulations by Estimation of Wildfire Wind Conditions from Fire Perimeter Measurements

  • Conference paper
  • First Online:
Computational Science – ICCS 2021 (ICCS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12746))

Included in the following conference series:

Abstract

This paper shows how a gradient-free optimization method is used to improve the prediction capabilities of wildfire progression by estimating the wind conditions driving a FARSITE wildfire model. To characterize the performance of the prediction of the perimeter as a function of the wind conditions, an uncertainty weighting is applied to each vertex of the measured fire perimeter and a weighted least-squares error is computed between the predicted and measured fire perimeter. In addition, interpolation of the measured fire perimeter and its uncertainty is adopted to match the number of vertices on the predicted and measured fire perimeter. The gradient-free optimization based on iterative refined gridding provides robustness to intermittent erroneous results produced by FARSITE and quickly find optimal wind conditions by paralleling the wildfire model calculations. Results on wind condition estimation are illustrated on two historical wildfire events: the 2019 Maria fire that burned south of the community of Santa Paula in the area of Somis, CA, and the 2019 Cave fire that started in the Santa Ynez Mountains of Santa Barbara County.

Work is supported by WIFIRE Commons and funded by NSF 2040676 under the Convergence Accelerator program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cheney, N., Gould, J., Catchpole, W.: The influence of fuel, weather and fire shape variables on fire-spread in grasslands. Int. J. Wildland Fire 3(1), 31–44 (1993)

    Article  Google Scholar 

  2. Cruz, M.G., Hurley, R.J., Bessell, R., Sullivan, A.L.: Fire behaviour in wheat crops-effect of fuel structure on rate of fire spread. Int. J. Wildland Fire 29(3), 258–271 (2020)

    Article  Google Scholar 

  3. Cruz, M.G., Sullivan, A.L., Gould, J.S.: The effect of fuel bed height in grass fire spread: addressing the findings and recommendations of Moinuddin et al. Int. J. Wildland Fire 30, 215 (2018)

    Google Scholar 

  4. Cruz, M.G., Sullivan, A.L., Gould, J.S., Hurley, R.J., Plucinski, M.P.: Got to burn to learn: the effect of fuel load on grassland fire behaviour and its management implications. Int. J. Wildland Fire 27(11), 727–741 (2018)

    Article  Google Scholar 

  5. Douglas, C.C., et al.: Demonstrating the validity of a wildfire DDDAS. In: Alexandrov, V.N., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2006. LNCS, vol. 3993, pp. 522–529. Springer, Heidelberg (2006). https://doi.org/10.1007/11758532_69

    Chapter  Google Scholar 

  6. Fang, H., Srivas, T., de Callafon, R.A., Haile, M.A.: Ensemble-based simultaneous input and state estimation for nonlinear dynamic systems with application to wildfire data assimilation. Control Eng. Pract. 63, 104–115 (2017)

    Article  Google Scholar 

  7. Finney, M.A.: FARSITE, Fire Area Simulator - model development and evaluation, vol. 4. US Department of Agriculture, Forest Service, Rocky Mountain Research Station (1998)

    Google Scholar 

  8. Kolden, C.A., Weisberg, P.J.: Assessing accuracy of manually-mapped wildfire perimeters in topographically dissected areas. Fire Ecol. 3, 22–31 (2007)

    Article  Google Scholar 

  9. Lin, Z., Liu, H.H., Wotton, M.: Kalman filter-based large-scale wildfire monitoring with a system of UAVs. IEEE Trans. Ind. Electron. 66(1), 606–615 (2018)

    Article  Google Scholar 

  10. Mandel, J., et al.: Towards a dynamic data driven application system for wildfire simulation. In: Sunderam, V.S., van Albada, G.D., Sloot, P.M.A., Dongarra, J.J. (eds.) ICCS 2005. LNCS, vol. 3515, pp. 632–639. Springer, Heidelberg (2005). https://doi.org/10.1007/11428848_82

    Chapter  Google Scholar 

  11. Mandel, J., et al.: A note on dynamic data driven wildfire modeling. In: Bubak, M., van Albada, G.D., Sloot, P.M.A., Dongarra, J. (eds.) ICCS 2004. LNCS, vol. 3038, pp. 725–731. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24688-6_94

    Chapter  Google Scholar 

  12. Rothermel, R.C.: A mathematical model for predicting fire spread in wildland fuels, vol. 115. Intermountain Forest and Range Experiment Station, Forest Service, United\(\ldots \) (1972)

    Google Scholar 

  13. Srivas, T., Artés, T., De Callafon, R.A., Altintas, I.: Wildfire spread prediction and assimilation for farsite using ensemble Kalman filtering. Procedia Comput. Sci. 80, 897–908 (2016)

    Article  Google Scholar 

  14. Srivas, T., de Callafon, R.A., Crawl, D., Altintas, I.: Data assimilation of wildfires with fuel adjustment factors in farsite using ensemble Kalman filtering. Procedia Comput. Sci. 108, 1572–1581 (2017)

    Article  Google Scholar 

  15. Subramanian, A., Tan, L., de Callafon, R.A., Crawl, D., Altintas, I.: Recursive updates of wildfire perimeters using barrier points and ensemble Kalman filtering. In: Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol. 12142, pp. 225–236. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50433-5_18

    Chapter  Google Scholar 

  16. Xing, Z., Zhang, Y., Su, C.Y., Qu, Y., Yu, Z.: Kalman filter-based wind estimation for forest fire monitoring with a quadrotor UAV. In: 2019 IEEE Conference on Control Technology and Applications (CCTA), pp. 783–788. IEEE (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raymond A. de Callafon .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tan, L., de Callafon, R.A., Block, J., Crawl, D., Altıntaş, I. (2021). Improving Wildfire Simulations by Estimation of Wildfire Wind Conditions from Fire Perimeter Measurements. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12746. Springer, Cham. https://doi.org/10.1007/978-3-030-77977-1_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77977-1_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77976-4

  • Online ISBN: 978-3-030-77977-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics