Skip to main content

Towards Data-Driven Simulation Models for Building Energy Management

  • Conference paper
  • First Online:
Computational Science – ICCS 2021 (ICCS 2021)

Abstract

The computational simulation of physical phenomena is a highly complex and expensive process. Traditional simulation models, based on equations describing the behavior of the system, do not allow generating data in sufficient quantity and speed to predict its evolution and make decisions accordingly automatically. These features are particularly relevant in building energy simulations. In this work, we introduce the idea of deep data-driven simulation models (D3S), a novel approach in terms of the combination of models. A D3S is capable of emulating the behavior of a system in a similar way to simulators based on physical principles but requiring less effort in its construction—it is learned automatically from historical data—and less time to run—no need to solve complex equations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See, for instance, ICLR 2021’s workshop “Deep Learning for Simulation (SIMDL)”.

References

  1. Brockherde, F., Vogt, L., Li, L., Tuckerman, M.E., Burke, K., Müller, K.R.: Bypassing the kohn-sham equations with machine learning. Nat. Commun. 8, 1–10 (2017). https://doi.org/10.1038/s41467-017-00839-3

    Article  Google Scholar 

  2. Che, Z., Purushotham, S., Cho, K., Sontag, D., Liu, Y.: Recurrent neural networks for multivariate time series with missing values. Sci. Rep. 8, 1–12 (2018). https://doi.org/10.1038/s41598-018-24271-9

    Article  Google Scholar 

  3. Chiuso, A., Pillonetto, G.: System identification: a machine learning perspective. Ann. Rev. Control Robot. Auton. Syst. 2, 281–304 (2019). https://doi.org/10.1146/annurev-control-053018-023744

    Article  Google Scholar 

  4. Ferracuti, F., et al.: Data-driven models for short-term thermal behaviour prediction in real buildings. Appl. Energy 204, 1375–1387 (2017). https://doi.org/10.1016/j.apenergy.2017.05.015

  5. Gevers, M.: A personal view of the development of system identification: a 30-year journey through an exciting field. IEEE Control. Syst. 26, 93–105 (2006). https://doi.org/10.1109/MCS.2006.252834

    Article  Google Scholar 

  6. Gómez, J., Molina-Solana, M.: Towards self-adaptive building energy control in smart grids. In: NeurIPS 2019 Workshop Tackling Climate Change with Machine Learning. Vancouver, Canada, December 2019. https://www.climatechange.ai/papers/neurips2019/49

  7. Gómez-Romero, J., et al.: A probabilisticalgorithm for predictive control with full-complexity models innon-residential buildings. IEEE Access 7, 38748–38765 (2019).https://doi.org/10.1109/ACCESS.2019.2906311

  8. Kasim, M.F., et al.: Building high accuracy emulators for scientific simulations with deep neural architecture search (2020)

    Google Scholar 

  9. Killian, M., Kozek, M.: Ten questions concerning model predictive control for energy efficient buildings. Build. Environ. 105, 403–412 (2016). https://doi.org/10.1016/j.buildenv.2016.05.034

    Article  Google Scholar 

  10. Kwan, J., et al.: Cosmic emulation: fast predictions for the galaxy power spectrum. The Astrophysical Journal 810 (2015). https://doi.org/10.1088/0004-637X/810/1/35

  11. Lee, J.H.: Model predictive control: review of the three decades of development. Int. J. Control Autom. Syst. 9, (2011). https://doi.org/10.1007/s12555-011-0300-6

  12. Liu, Y., Dinh, N., Sato, Y., Niceno, B.: Data-driven modeling for boiling heat transfer: using deep neural networks and high-fidelity simulation results. Appl. Thermal Eng. 144, 305–320 (2018). https://doi.org/10.1016/j.applthermaleng.2018.08.041

    Article  Google Scholar 

  13. Ljung, L.: System Identification: Theory for the User. Prentice Hall, Hoboken (1999)

    Google Scholar 

  14. Loten, A.: More manufacturers bet on simulation software. Wall Street J. (2020). https://www.wsj.com/articles/more-manufacturers-bet-on-simulation-software-11582240105

  15. Luong, M.T., Le, Q.V., Sutskever, I., Vinyals, O., Kaiser, L.: Multi-task sequence to sequence learning. In: International Conference on Learning Representations (ICLR 2016) (2016). http://arxiv.org/abs/1511.06114

  16. Molina-Solana, M., Ros, M., Ruiz, M.D., Gómez-Romero, J., Martin-Bautista, M.J.: Data science for building energy management: a review. Renew. Sustain. Energy Rev. 70, 598–609 (2017). https://doi.org/10.1016/j.rser.2016.11.132

    Article  Google Scholar 

  17. Raissi, M., Perdikaris, P., Karniadakis, G.E.: Physics-informed neural networks: a deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations. J. Comput. Phys. 378, 686–707 (2019). https://doi.org/10.1016/j.jcp.2018.10.045

    Article  MathSciNet  MATH  Google Scholar 

  18. Shi, H., Xu, M., Li, R.: Deep learning for household load forecasting–a novel pooling deep RNN. IEEE Trans. Smart Grid 9, 5271–5280 (2018). https://doi.org/10.1109/TSG.2017.2686012

  19. Shumway, R.H.: Time Series Analysis and its Applications. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52452-8

  20. Vaswani, A., et al.: Attention is all you need. In: Proceedings of the 31st Conference on Neural Information Processing Systems. Long Beach, CA, USA, December 2017

    Google Scholar 

  21. Wagg, D.J., Worden, K., Barthorpe, R.J., Gardner, P.: Digital twins: state-of-the-art and future directions for modeling and simulation in engineering dynamics applications. ASME J. Risk Uncertainty Part B 6(3) (2020). https://doi.org/10.1115/1.4046739

  22. Zhu, J., Hu, S., Arcucci, R., Xu, C., Zhu, J., ke Guo, Y.: Model error correction in data assimilation by integrating neural networks. Big Data Mining and Analytics 2, 83–91 (2019). https://doi.org/10.26599/BDMA.2018.9020033

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Molina-Solana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gómez-Romero, J., Molina-Solana, M. (2021). Towards Data-Driven Simulation Models for Building Energy Management. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12746. Springer, Cham. https://doi.org/10.1007/978-3-030-77977-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77977-1_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77976-4

  • Online ISBN: 978-3-030-77977-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics