Skip to main content

Towards Understanding Time Varying Triangle Meshes

  • Conference paper
  • First Online:
Computational Science – ICCS 2021 (ICCS 2021)

Abstract

Time varying meshes are more popular than ever as a representation of deforming shapes, in particular for their versatility and inherent ability to capture both true and spurious topology changes. In contrast with dynamic meshes, however, they do not capture the temporal correspondence, which (among other problems) leads to very high storage and processing costs. Unfortunately, establishing temporal correspondence of surfaces is difficult, because it is generally not bijective: even when the full visible surface is captured in each frame, some parts of the surface may be missing in some frames due to self-contact. We observe that, in contrast with the inherent absence of bijectivity in surface correspondence, volume correspondence is bijective in a wide class of possible input data. We demonstrate that using a proper intitialization and objective function, it is possible to track the volume, even when considering only a pair of subsequent frames at the time. Currently, the process is rather slow, but the results are promising and may lead to a new level of understanding and new algorithms for processing of time varying meshes, including compression, editing, texturing and others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belkin, M., Sun, J., Wang, Y.: Discrete Laplace operator on meshed surfaces. In: Proceedings of the Twenty-Fourth Annual Symposium on Computational Geometry, SCG 2008. Association for Computing Machinery, New York (2008)

    Google Scholar 

  2. Bojsen-Hansen, M., Li, H., Wojtan, C.: Tracking surfaces with evolving topology. ACM Trans. Graph. 31(4), 53-1 (2012)

    Google Scholar 

  3. Celebi, M.E., Kingravi, H.A., Vela, P.A.: A comparative study of efficient initialization methods for the k-means clustering algorithm. Expert Syst. Appl. 40(1), 200–210 (2013)

    Article  Google Scholar 

  4. Cuturi, M.: Sinkhorn distances: lightspeed computation of optimal transport. In: Burges, C.J.C., Bottou, L., Welling, M., Ghahramani, Z., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems, vol. 26, pp. 2292–2300. Curran Associates, Inc. (2013)

    Google Scholar 

  5. de Queiroz, R.L., Chou, P.A.: Motion-compensated compression of dynamic voxelized point clouds. IEEE Trans. Image Process. 26(8), 3886–3895 (2017). https://doi.org/10.1109/TIP.2017.2707807

    Article  MathSciNet  MATH  Google Scholar 

  6. Doumanoglou, A., Alexiadis, D.S., Zarpalas, D., Daras, P.: Toward real-time and efficient compression of human time-varying meshes. IEEE Trans. Circ. Syst. Video Technol. 24(12) (2014). https://doi.org/10.1109/TCSVT.2014.2319631

  7. Garcia, D.C., de Queiroz, R.L.: Context-based octree coding for point-cloud video. In: 2017 IEEE International Conference on Image Processing (ICIP), pp. 1412–1416 (2017). https://doi.org/10.1109/ICIP.2017.8296514

  8. Garcia, D.C., Fonseca, T.A., Ferreira, R.U., de Queiroz, R.L.: Geometry coding for dynamic voxelized point clouds using octrees and multiple contexts. IEEE Trans. Image Process. 29, 313–322 (2020). https://doi.org/10.1109/TIP.2019.2931466

    Article  MathSciNet  Google Scholar 

  9. Han, S., Yamasaki, T., Aizawa, K.: Time-varying mesh compression using an extended block matching algorithm. IEEE Trans. Circuits Syst. Video Technol. 17(11), 1506–1518 (2007). https://doi.org/10.1109/TCSVT.2007.903810

    Article  Google Scholar 

  10. Han, S., Yamasaki, T., Aizawa, K.: Geometry compression for time-varying meshes using coarse and fine levels of quantization and run-length encoding. In: 2008 15th IEEE International Conference on Image Processing, pp. 1045–1048 (2008). https://doi.org/10.1109/ICIP.2008.4711937

  11. Hou, J., Chau, L., He, Y., Magnenat-Thalmann, N.: A novel compression framework for 3d time-varying meshes. In: 2014 IEEE International Symposium on Circuits and Systems (ISCAS), p. 2161–2164 (2014). https://doi.org/10.1109/ISCAS.2014.6865596

  12. Huang, C., Allain, B., Franco, J., Navab, N., Ilic, S., Boyer, E.: Volumetric 3d tracking by detection. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3862–3870 (2016). https://doi.org/10.1109/CVPR.2016.419

  13. Jacobson, A., Kavan, L., Sorkine, O.: Robust inside-outside segmentation using generalized winding numbers. ACM Trans. Graph. 32(4), 1–12 (2013)

    Article  Google Scholar 

  14. Jang, E.S., et al.: Video-based point-cloud-compression standard in MPEG: from evidence collection to committee draft [standards in a nutshell]. IEEE Signal Process. Mag. 36(3), 118–123 (2019). https://doi.org/10.1109/MSP.2019.2900721

    Article  Google Scholar 

  15. Yang, J.-H., Kim, C.-S., Lee, S.-U.: Semi-regular representation and progressive compression of 3-d dynamic mesh sequences. IEEE Trans. Image Process. 15(9), 2531–2544 (2006). https://doi.org/10.1109/TIP.2006.877413

    Article  Google Scholar 

  16. Kammerl, J., Blodow, N., Rusu, R.B., Gedikli, S., Beetz, M., Steinbach, E.: Real-time compression of point cloud streams. In: 2012 IEEE International Conference on Robotics and Automation, pp. 778–785 (2012). https://doi.org/10.1109/ICRA.2012.6224647

  17. Kathariya, B., Li, L., Li, Z., Alvarez, J.R.: Lossless dynamic point cloud geometry compression with inter compensation and traveling salesman prediction. In: 2018 Data Compression Conference, p. 414 (2018). https://doi.org/10.1109/DCC.2018.00067

  18. Li, H., Sumner, R.W., Pauly, M.: Global correspondence optimization for non-rigid registration of depth scans. In: Computer Graphics Forum, vol. 27, pp. 1421–1430. Wiley Online Library (2008)

    Google Scholar 

  19. Lien, J.M., Kurillo, G., Bajcsy, R.: Multi-camera tele-immersion system with real-time model driven data compression. Vis. Comput. 26(1), 3 (2010). https://doi.org/10.1007/s00371-009-0367-8

    Article  Google Scholar 

  20. Mekuria, R., Blom, K., Cesar, P.: Design, implementation, and evaluation of a point cloud codec for tele-immersive video. IEEE Trans. Circuits Syst. Video Technol. 27(4), 828–842 (2017). https://doi.org/10.1109/TCSVT.2016.2543039

    Article  Google Scholar 

  21. Milani, S., Polo, E., Limuti, S.: A transform coding strategy for dynamic point clouds. IEEE Trans. Image Process. 29, 8213–8225 (2020). https://doi.org/10.1109/TIP.2020.3011811

    Article  Google Scholar 

  22. Myronenko, A., Song, X.: Point set registration: coherent point drift. IEEE Trans. Pattern Anal. Mach. Intell. 32(12), 2262–2275 (2010)

    Article  Google Scholar 

  23. Myronenko, A., Song, X., Carreira-Perpinán, M.A.: Non-rigid point set registration: coherent point drift. In: Advances in Neural Information Processing Systems, pp. 1009–1016 (2007)

    Google Scholar 

  24. Santos, C.F., Lopes, F., Pinheiro, A., da Silva Cruz, L.A.: A sub-partitioning method for point cloud inter-prediction coding. In: 2018 IEEE Visual Communications and Image Processing (VCIP), pp. 1–4 (2018). https://doi.org/10.1109/VCIP.2018.8698661

  25. Schwarz, S., Sheikhipour, N., Fakour Sevom, V., Hannuksela, M.M.: Video coding of dynamic 3d point cloud data. APSIPA Trans. Signal Inf. Process. 8, e31 (2019). https://doi.org/10.1017/ATSIP.2019.24

  26. Thanou, D., Chou, P.A., Frossard, P.: Graph-based compression of dynamic 3d point cloud sequences. IEEE Trans. Image Process. 25(4), 1765–1778 (2016). https://doi.org/10.1109/TIP.2016.2529506

    Article  MathSciNet  MATH  Google Scholar 

  27. Váša, L., Skala, V.: CODDYAC: connectivity driven dynamic mesh compression. In: 3DTV Conference Proceedings (2007)

    Google Scholar 

  28. Vlasic, D., Baran, I., Matusik, W., Popović, J.: Articulated mesh animation from multi-view silhouettes. ACM Trans. Graph. 27(3), 1–9 (2008)

    Article  Google Scholar 

  29. Xu, Y., Zhu, W., Xu, Y., Li, Z.: Dynamic point cloud geometry compression via patch-wise polynomial fitting. In: ICASSP 2019–2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2287–2291 (2019). https://doi.org/10.1109/ICASSP.2019.8682413

  30. Yamasaki, T., Aizawa, K.: Patch-based compression for time-varying meshes. In: 2010 IEEE International Conference on Image Processing, pp. 3433–3436 (2010). https://doi.org/10.1109/ICIP.2010.5652911

  31. Yoshiyasu, Y., Ma, W.C., Yoshida, E., Kanehiro, F.: As-conformal-as-possible surface registration. Comput. Graph. Forum 33(5), 257–267 (2014). https://doi.org/10.1111/cgf.12451

Download references

Acknowledgement

This work was supported by the project 20-02154S of the Czech Science Foundation. Jan Dvořák was also partially supported by the University specific student research project SGS-2019-016 Synthesis and Analysis of Geometric and Computing Models. The authors thank Diego Gadler from AXYZ Design, S.R.L. for providing the test data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Libor Váša .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dvořák, J., Vaněček, P., Váša, L. (2021). Towards Understanding Time Varying Triangle Meshes. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12746. Springer, Cham. https://doi.org/10.1007/978-3-030-77977-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77977-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77976-4

  • Online ISBN: 978-3-030-77977-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics