Skip to main content

Evaluating WRF-BEP/BEM Performance: On the Way to Analyze Urban Air Quality at High Resolution Using WRF-Chem+BEP/BEM

  • Conference paper
  • First Online:
Book cover Computational Science – ICCS 2021 (ICCS 2021)

Abstract

Air pollution exposure is a major environmental risk to health and has been estimated to be responsible for 7 million premature deaths worldwide every year. This is of special concern in cities, where there are high levels of pollution and high population densities. Not only is there an urgent need for cities to monitor, analyze, predict and inform residents about the air quality, but also to develop tools to help evaluate mitigation strategies to prevent contamination. In this respect, the Weather Research and Forecasting model coupled with chemistry (WRF-Chem) is useful in providing simulations of meteorological conditions but also of the concentrations of polluting species. When combined with the multi-layer urban scheme Building Effect Parameterization (BEP) coupled with the Building Energy Model (BEM), we are furthermore able to include urban morphology and urban canopy effects into the atmosphere that affect the chemistry and transport of the gases. However, using WRF-Chem+BEP/BEM is computationally very expensive especially at very high urban resolutions below 5 km. It is thus indispensable to properly analyze the performance of these models in terms of execution time and quality to be useful for both operational and reanalysis purposes. This work represents the first step towards this overall objective which is to determine the performance (in terms of computational time and quality of results) and the scalability of WRF-BEP/BEM. To do so, we use the case study of Metropolitan Area of Barcelona and analyze a 24-h period (March 2015) under two with different Urban schemes (Bulk and BEP/BEM). We analyze the execution time by running the two experiments in its serial configuration and in their parallel configurations using 2, 4, 8, 16, 32 and 64 cores. And the quality of the results by comparing to observed data from four meteorological stations in Barcelona.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, F., et al.: The integrated WRF/urban modelling system: development, evaluation, and applications to urban environmental problems. Int. J. Climatol. 31(2), 273–288 (2011). https://doi.org/10.1002/joc.2158

    Article  Google Scholar 

  2. Farguell, A., Cortés, A., Margalef, T., Miró, J.R., Mercader, J.: Scalability of a multi-physics system for forest fire spread prediction in multi-core platforms. J. Supercomput. 75(3), 1163–1174 (2019). https://doi.org/10.1007/s11227-018-2330-9

    Article  Google Scholar 

  3. GOOGLE: Coronavirus (COVID-19). https://news.google.com/covid19/map

  4. Grell, G.A., et al.: Fully coupled “online” chemistry within the WRF model. Atmos. Environ. 39(37), 6957–6975 (2005). https://doi.org/10.1016/j.atmosenv.2005.04.027

    Article  Google Scholar 

  5. Hersbach, H., et al.: The ERA5 global reanalysis. Q. J. Roy. Meteorol. Soc. 146(730), 1999–2049 (2020). https://doi.org/10.1002/qj.3803

    Article  Google Scholar 

  6. Kuehn, B.: Who: more than 7 million air pollution deaths each year. JAMA, J. Am. Med. Assoc. 311, 1486 (2014). https://doi.org/10.1001/jama.2014.4031

    Article  Google Scholar 

  7. Kusaka, H., Kimura, F.: A simple single-layer urban canopy model for atmospheric models: comparison with multi-layer and SLAB models. Bound.-Layer Meteorol. 101(ii), 329–358 (2001). https://doi.org/10.1023/A:1019207923078

    Article  Google Scholar 

  8. Martilli, A., Clappier, A., Rotach, M.W.: An urban surface exchange parameterisation for mesoscale models. Bound.-Layer Meteorol. 104(2), 261–304 (2002). https://doi.org/10.1023/A:1016099921195

    Article  Google Scholar 

  9. de la Paz, D., Borge, R., Martilli, A.: Assessment of a high resolution annual WRF-BEP/CMAQ simulation for the urban area of Madrid (Spain). Atmos. Environ. 144, 282–296 (2016). https://doi.org/10.1016/j.atmosenv.2016.08.082

    Article  Google Scholar 

  10. Ribeiro, I., Martilli, A., Falls, M., Zonato, A., Villalba, G.: Highly resolved WRF-BEP/BEM simulations over Barcelona urban area with LCZ. Atmos. Res. 248, 105220 (2021). https://doi.org/10.1016/j.atmosres.2020.105220

    Article  Google Scholar 

  11. Salamanca, F., Krpo, A., Martilli, A., Clappier, A.: A new building energy model coupled with an urban canopy parameterization for urban climate simulations-part I. Formulation, verification, and sensitivity analysis of the model. Theor. Appl. Climatol. 99(3–4), 331–344 (2010). https://doi.org/10.1007/s00704-009-0142-9

    Article  Google Scholar 

  12. Salamanca, F., Martilli, A.: A new building energy model coupled with an urban canopy parameterization for urban climate simulations-part II. Validation with one dimension off-line simulations. Theor. Appl. Climatol. 99(3–4), 345–356 (2010). https://doi.org/10.1007/s00704-009-0143-8

    Article  Google Scholar 

  13. Shainer, G., et al.: Weather research and forecast (WRF) model: performance analysis on advanced multi-core HPC clusters. In: The 10th LCI International Conference on High Performance Clustered Computing, pp. 1–14 (2009)

    Google Scholar 

  14. Skamarock, W., Al., E.: A description of the advanced research WRF model version 4. NCAR (2019)

    Google Scholar 

  15. SMC: Climatic report. Servei Meteorològic de Catalunya. Departament de Territori i Sostenibilitat, March 2015. https://www.meteo.cat/wpweb/climatologia/el-clima-ara/butlleti-mensual/

  16. Tetzner, D., Thomas, E., Allen, C.: A validation of ERA5 reanalysis data in the southern Antarctic peninsula-Ellsworth land region, and its implications for ice core studies. Geosciences 9(7), 289 (2019). https://doi.org/10.3390/geosciences9070289

    Article  Google Scholar 

  17. WHO: Air pollution deaths per year. https://www.who.int/news-room/air-pollution

  18. Wilmoth, J.: Global demographic projections: future trajectories and associated uncertainty. https://www.un.org/en/development/desa/population/commission/pdf/48/sideEvents/14April2015_GlobalPopulationProjections_Presentation.pdf

Download references

Acknowledgments

This research has been supported by MINECO-Spain under contract TIN2017-84553-C2-1-R, and by the Spanish government under grant PRE2018-085425.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veronica Vidal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vidal, V., Cortés, A., Badia, A., Villalba, G. (2021). Evaluating WRF-BEP/BEM Performance: On the Way to Analyze Urban Air Quality at High Resolution Using WRF-Chem+BEP/BEM. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12746. Springer, Cham. https://doi.org/10.1007/978-3-030-77977-1_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77977-1_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77976-4

  • Online ISBN: 978-3-030-77977-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics