Skip to main content

An Enhanced Finite Element Algorithm for Thermal Darcy Flows with Variable Viscosity

  • Conference paper
  • First Online:
Computational Science – ICCS 2021 (ICCS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12747))

Included in the following conference series:

  • 1345 Accesses

Abstract

This paper deals with the development of a stable and efficient unified finite element method for the numerical solution of thermal Darcy flows with variable viscosity. The governing equations consist of coupling the Darcy equations for the pressure and velocity fields to a convection-diffusion equation for the heat transfer. The viscosity in the Darcy flows is assumed to be nonlinear depending on the temperature of the medium. The proposed method is based on combining a semi-Lagrangian scheme with a Galerkin finite element discretization of the governing equations along with an robust iterative solver for the associate linear systems. The main features of the enhanced finite element algorithm are that the same finite element space is used for all solutions to the problem including the pressure, velocity and temperature. In addition, the convection terms are accurately dealt with using the semi-Lagrangian scheme and the standard Courant-Friedrichs-Lewy condition is relaxed and the time truncation errors are reduced in the diffusion terms. Numerical results are presented for two examples to demonstrate the performance of the proposed finite element algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amanbek, Y., Singh, G., Pencheva, G., Wheeler, M.F.: Error indicators for incompressible Darcy flow problems using enhanced velocity mixed finite element method. Comput. Methods Appl. Mech. Eng. 363, 112884 (2020)

    Article  MathSciNet  Google Scholar 

  2. Bear, J.: Hydraulics of Groundwater. Springer, New York (1979)

    Google Scholar 

  3. Bernsdorf, J., Durst, F., Schäfer, M.: Comparison of cellular automata and finite volume techniques for simulation of incompressible flows in complex geometries. Int. J. Numer. Meth. Fluids 29, 251–264 (1999)

    Article  MathSciNet  Google Scholar 

  4. Bochev, C.R., Dohrmann, P.B.: A computational study of stabilized, low-order \({C}^0\) finite element approximations of Darcy equations. Comput. Mech. 38, 223–323 (2006)

    Article  Google Scholar 

  5. Bochev, P.B., Dohrmann, C.R., Gunzburger, M.D.: Stabilization of low-order mixed finite elements for the Stokes equations. SIAM J. Numer. Anal. 44(1), 82–101 (2006)

    Article  MathSciNet  Google Scholar 

  6. Boland, J.M., Nicolaides, R.A.: Stable and semistable low order finite elements for viscous flows. SIAM J. Numer. Anal. 22, 474–492 (1985)

    Article  MathSciNet  Google Scholar 

  7. Brezzi, F.: On existence, uniqueness, and approximation of saddle-point problems arising from Lagrangian multipliers. RAIRO Model. Math. Anal. Numer. 21, 129–151 (1974)

    MathSciNet  MATH  Google Scholar 

  8. Chalhoub, N., Omnes, P., Sayah, T., El Zahlaniyeh, R.: Full discretization of time dependent convection–diffusion–reaction equation coupled with the Darcy system. Calcolo 57(1), 1–28 (2019). https://doi.org/10.1007/s10092-019-0352-1

  9. Chen, Z., Ewing, R.: Mathematical analysis for reservoir models. SIAM J. Math. Anal. 30, 431–453 (1999)

    Article  MathSciNet  Google Scholar 

  10. De Marsily, G.: Quantitative Hydrogeology: Groundwater Hydrology for Engineers. Academic Press, New York (1986)

    Google Scholar 

  11. Dejam, M., Hassanzadeh, H.: Diffusive leakage of brine from aquifers during \(\rm CO_2\) geological storage. Adv. Water Res. 111, 36–57 (2018)

    Article  Google Scholar 

  12. Douglas, T.F., Russell, J.: Numerical methods for convection dominated diffusion problems based on combining the method of characteristics with finite elements or finite differences. SIAM J. Numer. Anal. 19, 871–885 (1982)

    Article  MathSciNet  Google Scholar 

  13. El-Amrani, M., Seaid, M.: Numerical simulation of natural and mixed convection flows by Galerkin-characteristic method. Int. J. Numer. Meth. Fluids 53(12), 1819–1845 (2007)

    Article  MathSciNet  Google Scholar 

  14. El-Amrani, M., Seaid, M.: An \(\rm L^2\)-projection for the Galerkin-characteristic solution of incompressible flows. SIAM J. Sci. Comput. 33(6), 3110–3131 (2011)

    Article  MathSciNet  Google Scholar 

  15. El-Amrani, M., Seaid, M.: A Galerkin-characteristic method for large-eddy simulation of turbulent flow and heat transfer. SIAM J. Sci. Comput. 30(6), 2734–2754 (2008)

    Article  MathSciNet  Google Scholar 

  16. El-Amrani, M., Seaïd, M.: A finite element semi-Lagrangian method with l2 interpolation. Int. J. Numer. Methods Eng. 90(12), 1485–1507 (2012)

    Article  Google Scholar 

  17. Feng, X.: On existence and uniqueness results for a coupled system modeling miscible displacement in porous media. J. Math. Anal. Appl. 194, 883–910 (1995)

    Article  MathSciNet  Google Scholar 

  18. Foicas, C., Guillopé, C., Temam, R.R.: Lagrangian representation of the flow. J. Diff. Eqn. 57, 440–449 (1985)

    Article  MathSciNet  Google Scholar 

  19. Gunzburger, M.: Finite Element Methods for Viscous Incompressible Flows. Academic Press, Boston (1989)

    MATH  Google Scholar 

  20. Halassi, A., Joundy, J., Salhi, L., Taik, A.: A meshfree method for heat explosion problems with natural convection in inclined porous media. MATEC Web Conf. 241, 01019 (2018)

    Article  Google Scholar 

  21. Khaled, A.-R.A., Vafai, K.: The role of porous media in modeling flow and heat transfer in biological tissues. Int. J. Heat Mass Transf. 46(26), 4989–5003 (2003)

    Article  Google Scholar 

  22. Nield, D.A., Bejan, A.: Convection in Porous Media, 2nd edn. Springer, New York (1999). https://doi.org/10.1007/978-1-4757-3033-3

    Book  MATH  Google Scholar 

  23. Notsu, H., Rui, H., Tabata, M.: Development and L2-analysis of a single-step characteristics finite difference scheme of second order in time for convection-diffusion problems. J. Algorithms Comput. Technol. 7, 343–380 (2013)

    Article  MathSciNet  Google Scholar 

  24. Pironneau, O.: On the transport-diffusion algorithm and its applications to the Navier-Stokes equations. Numer. Math. 38, 309–332 (1982)

    Article  MathSciNet  Google Scholar 

  25. Rui, H., Zhang, J.: A stabilized mixed finite element method for coupled Stokes and Darcy flows with transport. Comput. Methods Appl. Mech. Eng. 315, 169–189 (2017)

    Article  MathSciNet  Google Scholar 

  26. Salhi, L., El-Amrani, M., Seaid, M.: A Galerkin-characteristic unified finite element method for moving thermal fronts in porous media. J. Comput. Appl. Math. p. 113159 (2020)

    Google Scholar 

  27. Salhi, L., El-Amrani, M., Seaid, M.: A stabilized semi-Lagrangian finite element method for natural convection in Darcy flows. Comput. Math. Methods p. e1140 (2021)

    Google Scholar 

  28. Seaid, M.: Semi-Lagrangian integration schemes for viscous flows. Comp. Methods Appl. Math. 4, 392–409 (2002)

    Article  MathSciNet  Google Scholar 

  29. Temperton, A., Staniforth, C.: An efficient two-time-level semi-Lagrangian semi-implicit integration scheme. Q. J. Roy. Meteor. Soc. 113, 1025–1039 (1987)

    Article  Google Scholar 

  30. Xuan, Y.M., Roetzel, W.: Bioheat equation of the human thermal system. Chem. Eng. Technol. 20(4), 268–276 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loubna Salhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Salhi, L., El-Amrani, M., Seaid, M. (2021). An Enhanced Finite Element Algorithm for Thermal Darcy Flows with Variable Viscosity. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12747. Springer, Cham. https://doi.org/10.1007/978-3-030-77980-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77980-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77979-5

  • Online ISBN: 978-3-030-77980-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics