Abstract
In many real-life decision-making problems, decisions have to be based on partially incomplete of uncertain data. Since classical MCDA methods were created to be used with numerical data, they are often unable to process incomplete or uncertain data. There are several ways to handle uncertainty and incompleteness in the data, i.e., interval numbers, fuzzy numbers, and their generalizations. New methods are developed, and classical methods are modified to work with incomplete and uncertain data. In this paper, we propose an extension of the SPOTIS method, which is a new rank-reversal free MCDA method. Our extension allows for applying this method to decision problems with missing or uncertain data. The proposed approach is compared in two study cases with other MCDA methods: COMET and TOPSIS. Obtained rankings would be analyzed using rank correlation coefficients.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aires, R.F.F., Ferreira, L.: The rank reversal problem in multi-criteria decision making: a literature review. Pesqui. Oper. 38(2), 331–362 (2018)
Behzadian, M., Otaghsara, S.K., Yazdani, M., Ignatius, J.: A state-of the-art survey of TOPSIS applications. Exp. Syst. Appl. 39(17), 13051–13069 (2012)
Ceballos, B., Pelta, D.A., Lamata, M.T.: Rank reversal and the VIKOR method: an empirical evaluation. Int. J. Inf. Technol. Decis. Making 17(02), 513–525 (2018)
Dezert, J., Tchamova, A., Han, D., Tacnet, J.M.: The SPOTIS rank reversal free method for multi-criteria decision-making support. In: 2020 IEEE 23rd International Conference on Information Fusion (FUSION), pp. 1–8. IEEE (2020)
Dubois, D., Prade, H.: Fuzzy numbers: an overview. In: Readings in Fuzzy Sets for Intelligent Systems, pp. 112–148. Elsevier (1993)
Faizi, S., Rashid, T., Sałabun, W., Zafar, S., Wątróbski, J.: Decision making with uncertainty using hesitant fuzzy sets. Int. J. Fuzzy Syst. 20(1), 93–103 (2018)
García-Cascales, M.S., Lamata, M.T.: On rank reversal and TOPSIS method. Math. Comput. Model. 56(5–6), 123–132 (2012)
Figueira, J.É., Greco, S., Ehrogott, M.: Multiple Criteria Decision Analysis: State of the Art Surveys. ISORMS, vol. 78. Springer, New York (2005). https://doi.org/10.1007/b100605
Gu, Y., Zhang, S., Zhang, M.: Interval number comparison and decision making based on priority degree. In: Cao, B.-Y., Wang, P.-Z., Liu, Z.-L., Zhong, Y.-B. (eds.) International Conference on Oriental Thinking and Fuzzy Logic. AISC, vol. 443, pp. 197–205. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-30874-6_19
Kizielewicz, B., Sałabun, W.: A new approach to identifying a multi-criteria decision model based on stochastic optimization techniques. Symmetry 12(9), 1551 (2020)
Mareschal, B., De Smet, Y., Nemery, P.: Rank reversal in the PROMETHEE II method: some new results. In: 2008 IEEE International Conference on Industrial Engineering and Engineering Management, pp. 959–963. IEEE (2008)
Papathanasiou, J., Ploskas, N.: Multiple Criteria Decision Aid. SOIA, vol. 136. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91648-4
Sałabun, W.: The mean error estimation of TOPSIS method using a fuzzy reference models. J. Theor. Appl. Comput. Sci. 7(3), 40–50 (2013)
Sałabun, W.: The characteristic objects method: a new distance-based approach to multicriteria decision-making problems. J. Multi-Criteria Decis. Anal. 22(1–2), 37–50 (2015)
Sałabun, W., Karczmarczyk, A.: Using the COMET method in the sustainable city transport problem: an empirical study of the electric powered cars. Procedia Comput. Sci. 126, 2248–2260 (2018)
Sałabun, W., Karczmarczyk, A., Wątróbski, J.: Decision-making using the hesitant fuzzy sets comet method: an empirical study of the electric city buses selection. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1485–1492. IEEE (2018)
Sałabun, W., Karczmarczyk, A., Wątróbski, J., Jankowski, J.: Handling data uncertainty in decision making with COMET. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1478–1484. IEEE (2018)
Sałabun, W., Palczewski, K., Wątróbski, J.: Multicriteria approach to sustainable transport evaluation under incomplete knowledge: electric bikes case study. Sustainability 11(12), 3314 (2019)
Sałabun, W., Urbaniak, K.: A new coefficient of rankings similarity in decision-making problems. In: Krzhizhanovskaya, V.V., et al. (eds.) ICCS 2020. LNCS, vol. 12138, pp. 632–645. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50417-5_47
Sałabun, W., Wątróbski, J., Shekhovtsov, A.: Are MCDA methods benchmarkable? A comparative study of TOPSIS, VIKOR, COPRAS, and PROMETHEE II methods. Symmetry 12(9), 1549 (2020)
Sengupta, A., Pal, T.K.: On comparing interval numbers. Eur. J. Oper. Res. 127(1), 28–43 (2000)
Shekhovtsov, A., Kołodziejczyk, J., Sałabun, W.: Fuzzy model identification using monolithic and structured approaches in decision problems with partially incomplete data. Symmetry 12(9), 1541 (2020)
Torra, V.: Hesitant fuzzy sets. Int. J. Intell. Syst. 25(6), 529–539 (2010)
Utkin, L.V., Augustin, T.: Decision making under incomplete data using the imprecise Dirichlet model. Int. J. Approx. Reason. 44(3), 322–338 (2007)
Wang, Y.M., Luo, Y.: On rank reversal in decision analysis. Math. Comput. Model. 49(5–6), 1221–1229 (2009)
Wątróbski, J., Małecki, K., Kijewska, K., Iwan, S., Karczmarczyk, A., Thompson, R.G.: Multi-criteria analysis of electric vans for city logistics. Sustainability 9(8), 1453 (2017)
Žižović, M., Pamučar, D., Albijanić, M., Chatterjee, P., Pribićević, I.: Eliminating rank reversal problem using a new multi-attribute model-the RAFSI method. Mathematics 8(6), 1015 (2020)
Acknowledgments
The work was supported by the National Science Centre, Decision number UMO-2016/23/N/HS4/01931.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Shekhovtsov, A., Kizielewicz, B., Sałabun, W. (2021). New Rank-Reversal Free Approach to Handle Interval Data in MCDA Problems. In: Paszynski, M., Kranzlmüller, D., Krzhizhanovskaya, V.V., Dongarra, J.J., Sloot, P.M.A. (eds) Computational Science – ICCS 2021. ICCS 2021. Lecture Notes in Computer Science(), vol 12747. Springer, Cham. https://doi.org/10.1007/978-3-030-77980-1_35
Download citation
DOI: https://doi.org/10.1007/978-3-030-77980-1_35
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-77979-5
Online ISBN: 978-3-030-77980-1
eBook Packages: Computer ScienceComputer Science (R0)