Skip to main content

How Adaptive and Reliable is Your Program?

  • Conference paper
  • First Online:
Formal Techniques for Distributed Objects, Components, and Systems (FORTE 2021)

Abstract

We consider the problem of modelling and verifying the behaviour of systems characterised by a close interaction of a program with the environment. We propose to model the program-environment interplay in terms of the probabilistic modifications they induce on a set of application-relevant data, called data space. The behaviour of a system is thus identified with the probabilistic evolution of the initial data space. Then, we introduce a metric, called evolution metric, measuring the differences in the evolution sequences of systems and that can be used for system verification as it allows for expressing how well the program is fulfilling its tasks. We use the metric to express the properties of adaptability and reliability of a program, which allow us to identify potential critical issues of it w.r.t. changes in the initial environmental conditions. We also propose an algorithm, based on statistical inference, for the evaluation of the evolution metric.

This work has been partially supported by the IRF project “OPEL” (grant No. 196050-051) and by the PRIN project “IT-MaTTerS” (grant No. 2017FTXR7S).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Abate, A., D’Innocenzo, A., Benedetto, M.D.D.: Approximate abstractions of stochastic hybrid systems. IEEE Trans. Automat. Contr. 56(11), 2688–2694 (2011)

    Article  MathSciNet  Google Scholar 

  2. Abate, A., Katoen, J., Lygeros, J., Prandini, M.: Approximate model checking of stochastic hybrid systems. Eur. J. Control. 16(6), 624–641 (2010)

    Article  MathSciNet  Google Scholar 

  3. Abate, A., Prandini, M.: Approximate abstractions of stochastic systems: a randomized method. In: Proceedings of CDC-ECC 2011, pp. 4861–4866 (2011)

    Google Scholar 

  4. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: Proceedings of ICML 2017, pp. 214–223 (2017)

    Google Scholar 

  5. Bernardo, M., Nicola, R.D., Loreti, M.: A uniform framework for modeling nondeterministic, probabilistic, stochastic, or mixed processes and their behavioral equivalences. Inf. Comput. 225, 29–82 (2013)

    Article  MathSciNet  Google Scholar 

  6. Bloom, H.A.P., Lygeros, J. (eds.): Stochastic Hybrid Systems: Theory and Safety Critical Applications. Lecture Notes in Control and Information Sciences, vol. 337. Springer, Heidelberg (2006). https://doi.org/10.1007/11587392

    Book  Google Scholar 

  7. Breugel, F.: A behavioural pseudometric for metric labelled transition systems. In: Abadi, M., de Alfaro, L. (eds.) CONCUR 2005. LNCS, vol. 3653, pp. 141–155. Springer, Heidelberg (2005). https://doi.org/10.1007/11539452_14

    Chapter  Google Scholar 

  8. Cassandras, C.G., Lygeros, J. (eds.): Stochastic Hybrid Systems. Control Engineering, vol. 24, 1st edn. CRC Press, Boca Raton (2007)

    MATH  Google Scholar 

  9. Castiglioni, V., Chatzikokolakis, K., Palamidessi, C.: A logical characterization of differential privacy via behavioral metrics. In: Bae, K., Ölveczky, P.C. (eds.) FACS 2018. LNCS, vol. 11222, pp. 75–96. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-02146-7_4

    Chapter  Google Scholar 

  10. Castiglioni, V., Chatzikokolakis, K., Palamidessi, C.: A logical characterization of differential privacy. Sci. Comput. Program. 188, 102388 (2020)

    Article  Google Scholar 

  11. Castiglioni, V., Loreti, M., Tini, S.: Measuring adaptability and reliability of large scale systems. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12477, pp. 380–396. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61470-6_23

    Chapter  Google Scholar 

  12. Castiglioni, V., Loreti, M., Tini, S.: The metric linear-time branching-time spectrum on nondeterministic probabilistic processes. Theor. Comput. Sci. 813, 20–69 (2020)

    Article  MathSciNet  Google Scholar 

  13. Castro, P.F., D’Argenio, P.R., Demasi, R., Putruele, L.: Measuring masking fault-tolerance. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019, Part II. LNCS, vol. 11428, pp. 375–392. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1_21

    Chapter  Google Scholar 

  14. Cerný, P., Henzinger, T.A., Radhakrishna, A.: Simulation distances. Theor. Comput. Sci. 413(1), 21–35 (2012)

    Article  MathSciNet  Google Scholar 

  15. Chatzikokolakis, K., Gebler, D., Palamidessi, C., Xu, L.: Generalized bisimulation metrics. In: Baldan, P., Gorla, D. (eds.) CONCUR 2014. LNCS, vol. 8704, pp. 32–46. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44584-6_4

    Chapter  Google Scholar 

  16. Ciocchetta, F., Hillston, J.: Bio-PEPA: an extension of the process algebra PEPA for biochemical networks. Electron. Notes Theor. Comput. Sci. 194(3), 103–117 (2008)

    Article  Google Scholar 

  17. Desharnais, J., Gupta, V., Jagadeesan, R., Panangaden, P.: Metrics for labelled Markov processes. Theor. Comput. Sci. 318(3), 323–354 (2004)

    Article  MathSciNet  Google Scholar 

  18. Deshmukh, J.V., Majumdar, R., Prabhu, V.S.: Quantifying conformance using the skorokhod metric. Formal Methods Syst. Design 50(2–3), 168–206 (2017)

    Article  Google Scholar 

  19. Faugeras, O.P., Rüschendorf, L.: Risk excess measures induced by hemi-metrics. Probab. Uncertain. Quant. Risk 3(1), 1–35 (2018). https://doi.org/10.1186/s41546-018-0032-0

    Article  MathSciNet  MATH  Google Scholar 

  20. Gebler, D., Larsen, K.G., Tini, S.: Compositional bisimulation metric reasoning with probabilistic process calculi. Log. Methods Comput. Sci. 12(4) (2016)

    Google Scholar 

  21. Ghosh, S., Bansal, S., Sangiovanni-Vincentelli, A.L., Seshia, S.A., Tomlin, C.: A new simulation metric to determine safe environments and controllers for systems with unknown dynamics. In: Proceedings of HSCC 2019, pp. 185–196 (2019)

    Google Scholar 

  22. Giacalone, A., Jou, C.C., Smolka, S.A.: Algebraic reasoning for probabilistic concurrent systems. In: Proceedings of IFIP Work, Conference on Programming, Concepts and Methods, pp. 443–458 (1990)

    Google Scholar 

  23. Girard, A., Gößler, G., Mouelhi, S.: Safety controller synthesis for incrementally stable switched systems using multiscale symbolic models. IEEE Trans. Automat. Contr. 61(6), 1537–1549 (2016)

    Article  MathSciNet  Google Scholar 

  24. van Glabbeek, R.J., Smolka, S.A., Steffen, B.: Reactive, generative and stratified models of probabilistic processes. Inf. Comput. 121(1), 59–80 (1995)

    Article  MathSciNet  Google Scholar 

  25. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Proceedings of Advances in Neural Information Processing Systems, pp. 5767–5777 (2017)

    Google Scholar 

  26. Heredia, G., et al.: Control of a multirotor outdoor aerial manipulator. In: Proceedings of IROS 2014, pp. 3417–3422. IEEE (2014)

    Google Scholar 

  27. Hillston, J., Hermanns, H., Herzog, U., Mertsiotakis, V., Rettelbach, M.: Stochastic process algebras: integrating qualitative and quantitative modelling. In: Proceedings of International Conference on Formal Description Techniques 1994. IFIP, vol. 6, pp. 449–451 (1994)

    Google Scholar 

  28. Hu, J., Lygeros, J., Sastry, S.: Towards a theory of stochastic hybrid systems. In: Lynch, N., Krogh, B.H. (eds.) HSCC 2000. LNCS, vol. 1790, pp. 160–173. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-46430-1_16

    Chapter  MATH  Google Scholar 

  29. Kwiatkowska, M., Norman, G.: Probabilistic metric semantics for a simple language with recursion. In: Penczek, W., Szałas, A. (eds.) MFCS 1996. LNCS, vol. 1113, pp. 419–430. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61550-4_167

    Chapter  Google Scholar 

  30. Maler, O., Nickovic, D.: Monitoring temporal properties of continuous signals. In: Lakhnech, Y., Yovine, S. (eds.) FORMATS/FTRTFT -2004. LNCS, vol. 3253, pp. 152–166. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30206-3_12

    Chapter  MATH  Google Scholar 

  31. Malhame, R., Yee Chong, C.: Electric load model synthesis by diffusion approximation of a high-order hybrid-state stochastic system. IEEE Trans. Automat. Contr. 30(9), 854–660 (1985)

    Article  Google Scholar 

  32. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley Series in Probability and Statistics. Wiley, USA (2005)

    MATH  Google Scholar 

  33. Rachev, S.T., Klebanov, L.B., Stoyanov, S.V., Fabozzi, F.J.: The Methods of Distances in the Theory of Probability and Statistics. Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-4614-4869-3

    Book  MATH  Google Scholar 

  34. Segala, R.: Modeling and verification of randomized distributed real-time systems. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, USA (1995)

    Google Scholar 

  35. Skorokhod, A.V.: Limit theorems for stochastic processes. Theory Probab. Appl. 1, 261–290 (1956)

    Article  MathSciNet  Google Scholar 

  36. Sriperumbudur, B.K., Fukumizu, K., Gretton, A., Schölkopf, B., Lanckriet, G.R.G.: On the empirical estimation of integral probability metrics. Electron. J. Stat. 6, 1550–1599 (2021)

    MathSciNet  MATH  Google Scholar 

  37. Thorsley, D., Klavins, E.: Approximating stochastic biochemical processes with Wasserstein pseudometrics. IET Syst. Biol. 4(3), 193–211 (2010)

    Article  Google Scholar 

  38. Tolstikhin, I.O., Bousquet, O., Gelly, S., Schölkopf, B.: Wasserstein auto-encoders. In: Proceedings of ICLR 2018 (2018)

    Google Scholar 

  39. Vaserstein, L.N.: Markovian processes on countable space product describing large systems of automata. Probl. Peredachi Inf. 5(3), 64–72 (1969)

    MATH  Google Scholar 

  40. Villani, C.: Optimal Transport: Old and New, vol. 338. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-71050-9

    Book  MATH  Google Scholar 

  41. Virágh, C., Nagy, M., Gershenson, C., Vásárhelyi, G.: Self-organized UAV traffic in realistic environments. In: Proceedings of IROS 2016, pp. 1645–1652. IEEE (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valentina Castiglioni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 IFIP International Federation for Information Processing

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Castiglioni, V., Loreti, M., Tini, S. (2021). How Adaptive and Reliable is Your Program?. In: Peters, K., Willemse, T.A.C. (eds) Formal Techniques for Distributed Objects, Components, and Systems. FORTE 2021. Lecture Notes in Computer Science(), vol 12719. Springer, Cham. https://doi.org/10.1007/978-3-030-78089-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78089-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78088-3

  • Online ISBN: 978-3-030-78089-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics