Skip to main content

Real-World Distance Reduction in a Virtual Reality-Based Wheelchair Simulation on Flat Surfaces

  • Conference paper
  • First Online:
Universal Access in Human-Computer Interaction. Access to Media, Learning and Assistive Environments (HCII 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12769))

Included in the following conference series:

  • 1205 Accesses

Abstract

A virtual reality (VR)-based wheelchair simulator based on a combination of motions attainable by an electric-powered wheelchair and vection-inducing videos displayed on a head-mounted display has been proposed for patient rehabilitation and training. This simulator requires the actual physical distance traveled by the wheelchair and the distance traveled by the wheelchair in the virtual environment to be the same. This requirement limits the locations where users can use this simulator. We clarify the relationship between these distances and aim to reduce the physical distance required to perform VR-based wheelchair simulations. To this end, we conducted an experiment whereby participants drove a wheelchair on a flat ground at a constant speed and at a decreasing speed for 8 m. The experimental results showed that the required physical distance can be reduced by 30% and 20% using the constant speed and deceleration approaches, respectively. The results of this study are expected to contribute to the development of wheelchair simulators that require less space.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Miyata, A., Motooka, K., Go, K.: A wheelchair simulator using limited-motion patterns and vection-inducing movies. In: Proceedings of the 31st Australian Conference on Human-Computer-Interaction (OzCHI 2019), pp. 508–512 (2019)

    Google Scholar 

  2. Thomas, P., Tamar, W., Shimon, R., Evelyne, K.: Wheelchair simulators: a review. Technol. Disabil. 21(1–2), 1–10 (2009)

    Google Scholar 

  3. Abellard, P., Randria, I., Abellard, A., Ben Khelifa, M.M., Ramanantsizehena, P.: Electric Wheelchair Navigation Simulators: Why, When, How? Mechatronic Systems Applications, pp. 161–186 (2010)

    Google Scholar 

  4. Desbonnet, M., Cox, S.L., Rahman, A.: Development and evaluation of a virtual reality based training system for disabled children. In: Proceedings of the ICDVRAT 1998, pp. 177–182 (1998)

    Google Scholar 

  5. Rodriguez, N.: Development of a wheelchair simulator for children with multiple disabilities. In: Proceedings of the VAAT 2015, pp. 1–4 (2015)

    Google Scholar 

  6. Silva, Y.M., Simes, W., da Silva Tefilo, M.R., Naves, E.L.M.: Training environment for electric powered wheelchairs using teleoperation through a head mounted display. In: Proceedings of the ICCE 2018 (2018)

    Google Scholar 

  7. Stewart, D.: A platform with six degrees of freedom. In: Proceedings of the UK Institution of Mechanical Engineers, vol. 180, no. 1, pp. 371–386 (1965)

    Google Scholar 

  8. Sonar, A., Burdick, K.D., Begin, R.R., Carroll, J.J.: Development of a virtual reality-based power wheel chair simulator. In: Proceedings of the ICMA 2005, pp. 222–229 (2005)

    Google Scholar 

  9. Niniss, H., Inoue, T.: Electric wheelchair simulator for rehabilitation of persons with motor disability. In: Proceedings of the SVR 2006 (2006)

    Google Scholar 

  10. Razzaque, S., Kohn, Z., Whitton, M.C.: Redirected Walking. In: Eurographics 2001, vol. 9, pp. 105–106 (2001)

    Google Scholar 

  11. Bolling, L., Stein, N., Steinicke, F., Lappe, M.: Shrinking circles: adaptation to increased curvature gain in redirected walking. In: Proceedings of the IEEE VR 2019 (2019)

    Google Scholar 

  12. Steinicke, F., Bruder, G., Jerald, J., Frenz, H., Lappe, M.: Estimation of detection thresholds for redirected walking techniques. IEEE Trans. Visual. Comput. Graph. 16(1), 17–27 (2010)

    Article  Google Scholar 

  13. Matsumoto, K., Ban, Y., Narumi, T., Yanase, Y., Tanikawa, T., Hirose, M.: Unlimited corridor: redirected walking techniques using visuo haptic interaction. In: SIGGRAPH 2016 Emerging Technologies (2016)

    Google Scholar 

  14. Thomas, J., Rosenberg, E.S.: A general reactive algorithm for redirected walking using artificial potential functions. In: Proceedings of IEEE VR 2019 (2019)

    Google Scholar 

  15. Rewkowski, N., Rungta, A., Whitton, M., Lin, M.: Evaluating the effectiveness of redirected walking with auditory distractors for navigation in virtual environments. In: Proceedings of the IEEE VR 2019 (2019)

    Google Scholar 

  16. Hayashi, D., Fujita, K., Takashima, K., Lindeman, R.W., Kitamura, Y.: Redirected jumping: imperceptibly manipulating jump motions in virtual reality. In: Proceedings of the IEEE VR 2019 (2019)

    Google Scholar 

  17. Eric, R., Bachmann, E.H., Hoffbauer, C., Messinger, J.: Multi-user redirected walking and resetting using artificial potential fields. In: Proceedings of the IEEE VR 2019 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grant No. JP19H04160.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akihiro Miyata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Motooka, K., Okawara, T., Yamato, Y., Miyata, A. (2021). Real-World Distance Reduction in a Virtual Reality-Based Wheelchair Simulation on Flat Surfaces. In: Antona, M., Stephanidis, C. (eds) Universal Access in Human-Computer Interaction. Access to Media, Learning and Assistive Environments. HCII 2021. Lecture Notes in Computer Science(), vol 12769. Springer, Cham. https://doi.org/10.1007/978-3-030-78095-1_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78095-1_32

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78094-4

  • Online ISBN: 978-3-030-78095-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics