Skip to main content

Learning Multi-resolution Graph Edge Embedding for Discovering Brain Network Dysfunction in Neurological Disorders

  • Conference paper
  • First Online:
Information Processing in Medical Imaging (IPMI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12729))

Included in the following conference series:

Abstract

Tremendous recent literature show that associations between different brain regions, i.e., brain connectivity, provide early symptoms of neurological disorders. Despite significant efforts made for graph neural network (GNN) techniques, their focus on graph nodes makes the state-of-the-art GNN methods not suitable for classifying brain connectivity as graphs where the objective is to characterize disease-relevant network dysfunction patterns on graph links. To address this issue, we propose Multi-resolution Edge Network (MENET) to detect disease-specific connectomic benchmarks with high discrimination power across diagnostic categories. The core of MENET is a novel graph edge-wise transform that we propose, which allows us to capture multi-resolution “connectomic” features. Using a rich set of the connectomic features, we devise a graph learning framework to jointly select discriminative edges and assign diagnostic labels for graphs. Experiments on two real datasets show that MENET accurately predicts diagnostic labels and identify brain connectivities highly associated with neurological disorders such as Alzheimer’s Disease and Attention-Deficit/Hyperactivity Disorder.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borgwardt, K.M., Kriegel, H.P.: Shortest-path kernels on graphs. In: ICDM (2005)

    Google Scholar 

  2. Brown, M.R., Sidhu, G.S., Greiner, R., et al.: ADHD-200 global competition: diagnosing ADHD using personal characteristic data can outperform resting state fMRI measurements. Front. Syst. Neurosci. 6, 69 (2012). https://doi.org/10.3389/fnsys.2012.0006

    Article  Google Scholar 

  3. Bullmore, E., Sporns, O.: Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10(3), 186 (2009)

    Article  Google Scholar 

  4. Chincarini, A., Bosco, P., Calvini, P., et al.: Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer’s disease. Neuroimage 58(2), 469–480 (2011). https://doi.org/10.1016/j.neuroimage.2011.05.083

    Article  Google Scholar 

  5. Choo, I.H., Lee, D.Y., Oh, J.S., et al.: Posterior cingulate cortex atrophy and regional cingulum disruption in mild cognitive impairment and Alzheimer’s disease. Neurobiol. Aging 31(5), 772–779 (2010). https://doi.org/10.1016/j.neurobiolaging.2008.06.015

    Article  Google Scholar 

  6. Dennis, E.L., Thompson, P.M.: Functional brain connectivity using fMRI in aging and Alzheimer’s disease. Neuropsychol. Rev. 24(1), 49–62 (2014). https://doi.org/10.1007/s11065-014-9249-6

    Article  Google Scholar 

  7. Destrieux, C., Fischl, B., Dale, A., Halgren, E.: Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. Neuroimage 53(1), 1–15 (2010). https://doi.org/10.1016/j.neuroimage.2010.06.010

    Article  Google Scholar 

  8. Friston, K.J.: Statistical Parametric Mapping. In: Kötter, R. (eds.) Neuroscience Databases. Springer, Boston (2003). https://doi.org/10.1007/978-1-4615-1079-6_16

  9. Galton, C.J., Patterson, K., Graham, K., et al.: Differing patterns of temporal atrophy in Alzheimer’s disease and semantic dementia. Neurology 57(2), 216–225 (2001). https://doi.org/10.1212/wnl.57.2.216

    Article  Google Scholar 

  10. Gärtner, T., Flach, P., Wrobel, S.: On graph kernels: hardness results and efficient alternatives. In: Schölkopf, B., Warmuth, M.K. (eds.) COLT-Kernel 2003. LNCS (LNAI), vol. 2777, pp. 129–143. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45167-9_11

    Chapter  MATH  Google Scholar 

  11. Greicius, M.D., Krasnow, B., Reiss, A.L., Menon, V.: Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proc. Natl. Acad. Sci. 100(1), 253–258 (2003). https://doi.org/10.1073/pnas.0135058100

    Article  Google Scholar 

  12. Hammond, D., Vandergheynst, P., Gribonval, R.: Wavelets on graphs via spectral graph theory. Appl. Comput. Harmon. Anal. 30(2), 129–150 (2011). https://doi.org/10.1016/j.acha.2010.04.005

    Article  MathSciNet  MATH  Google Scholar 

  13. Jie, B., Zhang, D., Wee, C.Y., Shen, D.: Topological graph kernel on multiple thresholded functional connectivity networks for mild cognitive impairment classification. Hum. Brain Mapp. 35(7), 2876–2897 (2014). https://doi.org/10.1002/hbm.22353

    Article  Google Scholar 

  14. Kang, U., Tong, H., Sun, J.: Fast random walk graph kernel. In: ICDM (2012)

    Google Scholar 

  15. Karas, G., Scheltens, P., Rombouts, S., et al.: Precuneus atrophy in early-onset Alzheimer’s disease: a morphometric structural MRI study. Neuroradiology 49(12), 967–976 (2007). https://doi.org/10.1007/s00234-007-0269-2

    Article  Google Scholar 

  16. Kim, W.H., Pachauri, D., Hatt, C., et al.: Wavelet based multi-scale shape features on arbitrary surfaces for cortical thickness discrimination. Adv. Neural Inf. Process. Syst. 2012, 1241–1249 (2012)

    Google Scholar 

  17. Kim, W.H., Kim, H.J., Adluru, N., Singh, V.: Latent variable graphical model selection using harmonic analysis: applications to the human connectome project (hcp). In: CVPR, pp. 2443–2451 (2016)

    Google Scholar 

  18. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. In: ICLR (2017)

    Google Scholar 

  19. Landrieu, L., Simonovsky, M.: Large-scale point cloud semantic segmentation with superpoint graphs. In: CVPR, pp. 4558–4567 (2018)

    Google Scholar 

  20. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: ICCV, pp. 2980–2988 (2017)

    Google Scholar 

  21. Ma, X., Wu, G., Kim, W.H.: Enriching statistical inferences on brain connectivity for Alzheimer’s disease analysis via latent space graph embedding. In: ISBI, pp. 1685–1689. IEEE (2020)

    Google Scholar 

  22. Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press (1999)

    Google Scholar 

  23. Marsh, A.A., Finger, E.C., Mitchell, D.G., et al.: Reduced amygdala response to fearful expressions in children and adolescents with callous-unemotional traits and disruptive behavior disorders. Am. J. Psychiatry 165(6), 712–20 (2008). https://doi.org/10.1176/appi.ajp.2007.07071145

    Article  Google Scholar 

  24. Moradi, E., Pepe, A., Gaser, C., Huttunen, H., Tohka, J., Initiative, A.D.N.: Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects. Neuroimage 104, 398–412 (2015). https://doi.org/10.1016/j.neuroimage.2014.10.002

    Article  Google Scholar 

  25. Murias, M., Swanson, J.M., Srinivasan, R.: Functional connectivity of frontal cortex in healthy and ADHD children reflected in EEG coherence. Cereb. Cortex 17(8), 1788–1799 (2006)

    Article  Google Scholar 

  26. Narayanan, A., Chandramohan, M., Venkatesan, R., et al.: graph2vec: learning distributed representations of graphs. arXiv preprint arXiv:1707.05005 (2017)

  27. Ng, B., Varoquaux, G., Poline, J.B., Thirion, B., Greicius, M.D., Poston, K.L.: Distinct alterations in Parkinson’s medication-state and disease-state connectivity. NeuroImage Clin. 16, 575–585 (2017)

    Article  Google Scholar 

  28. Riesen, K., Bunke, H.: Graph classification based on vector space embedding. Int. J. Pattern Recognit. Artif. Intell. 23(06), 1053–1081 (2009). https://doi.org/10.1142/7731

    Article  MATH  Google Scholar 

  29. Rubia, K., Smith, A.B., Brammer, M.J., Taylor, E.: Temporal lobe dysfunction in medication-Naive boys with attention-deficit/hyperactivity disorder during attention allocation and its relation to response variability. Biol. Psychiat. 62(9), 999–1006 (2007). https://doi.org/10.1016/j.biopsych.2007.02.024

    Article  Google Scholar 

  30. Shervashidze, N., Schweitzer, P., Van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-Lehman graph kernels. JMLR 12(9), 2539–2561 (2011)

    MathSciNet  MATH  Google Scholar 

  31. Shervashidze, N., Vishwanathan, S., Petri, T., Mehlhorn, K., Borgwardt, K.: Efficient graphlet kernels for large graph comparison. In: AISTATS (2009)

    Google Scholar 

  32. Simonovsky, M., Komodakis, N.: Dynamic edge-conditioned filters in convolutional neural networks on graphs. In: CVPR, pp. 3693–3702 (2017)

    Google Scholar 

  33. Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., et al.: Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15(1), 273–289 (2002). https://doi.org/10.1006/nimg.2001.0978

    Article  Google Scholar 

  34. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph attention networks. arXiv preprint arXiv:1710.10903 (2017)

  35. Wang, Y., Sun, Y., Liu, Z., Sarma, S.E., Bronstein, M.M., Solomon, J.M.: Dynamic graph CNN for learning on point clouds. ACM Trans. Graph. 38, 146 (2019)

    Google Scholar 

  36. Xu, N., Wang, P., Chen, L., Tao, J., Zhao, J.: MR-GNN: multi-resolution and dual graph neural network for predicting structured entity interactions. arXiv preprint arXiv:1905.09558 (2019)

  37. Zhang, M., Cui, Z., Neumann, M., Chen, Y.: An end-to-end deep learning architecture for graph classification. In: AAAI (2018)

    Google Scholar 

Download references

Acknowledgments

This research was supported by NSF IIS CRII 1948510, NSF IIS 2008602, NIH R01 AG059312, IITP-2020-2015-0-00742, and IITP-2019-0-01906 funded by MSIT (AI Graduate School Program at POSTECH).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, X., Wu, G., Hwang, S.J., Kim, W.H. (2021). Learning Multi-resolution Graph Edge Embedding for Discovering Brain Network Dysfunction in Neurological Disorders. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds) Information Processing in Medical Imaging. IPMI 2021. Lecture Notes in Computer Science(), vol 12729. Springer, Cham. https://doi.org/10.1007/978-3-030-78191-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78191-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78190-3

  • Online ISBN: 978-3-030-78191-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics