Abstract
Disease classification relying solely on imaging data attracts great interest in medical image analysis. Current models could be further improved, however, by also employing Electronic Health Records (EHRs), which contain rich information on patients and findings from clinicians. It is challenging to incorporate this information into disease classification due to the high reliance on clinician input in EHRs, limiting thepossibility for automated diagnosis. In this paper, we propose variational knowledge distillation (VKD), which is a new probabilistic inference framework for disease classification based on X-rays that leverages knowledge from EHRs. Specifically, we introduce a conditional latent variable model, where we infer the latent representation of the X-ray image with the variational posterior conditioning on the associated EHR text. By doing so, the model acquires the ability to extract the visual features relevant to the disease during learning and can therefore perform more accurate classification for unseen patients at inference based solely on their X-ray scans. We demonstrate the effectiveness of our method on three public benchmark datasets with paired X-ray images and EHRs. The results show that the proposed variational knowledge distillation can consistently improve the performance of medical image classification and significantly surpasses current methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Alemi, A.A., Fischer, I., Dillon, J.V., Murphy, K.: Deep variational information bottleneck. arXiv:1612.00410 (2016)
Cai, Q., Wang, H., Li, Z., Liu, X.: A survey on multimodal data-driven smart healthcare systems: approaches and applications. IEEE Access 7, 133583–133599 (2019)
Chen, B., Li, J., Lu, G., Yu, H., Zhang, D.: Label co-occurrence learning with graph convolutional networks for multi-label chest x-ray image classification. IEEE J. Biomed. Health Inform. 24, 2292–2302 (2020)
Chen, Y.C., et al.: UNITER: learning universal image-text representations. arXiv:1909.11740 (2019)
Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv:1810.04805 (2018)
Fu, H., Li, C., Liu, X., Gao, J., Celikyilmaz, A., Carin, L.: Cyclical annealing schedule: a simple approach to mitigating kl vanishing. arXiv:1903.10145 (2019)
Harerimana, G., Kim, J.W., Yoo, H., Jang, B.: Deep learning for electronic health records analytics. IEEE Access 7, 101245–101259 (2019)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE CVPR, June 2016
Huang, G., Liu, Z., Van Der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks. In: Proceedings of the IEEE CVPR, pp. 4700–4708 (2017)
Huang, K., Altosaar, J., Ranganath, R.: ClinicalBERT: modeling clinical notes and predicting hospital readmission. arXiv:1904.05342 (2019)
Irvin, J., et al.: CheXpert: a large chest radiograph dataset with uncertainty labels and expert comparison. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33, pp. 590–597 (2019)
Johnson, A.E., et al.: MIMIC-CXR: a large publicly available database of labeled chest radiographs. arXiv:1901.07042 (2019)
Johnson, A.E., et al.: MIMIC-III, a freely accessible critical care database. Sci. Data 3, 160035 (2016)
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv:1412.6980 (2014)
Kingma, D.P., Welling, M.: Auto-encoding variational Bayes. In: International conference on learning representations (2014)
Li, Y., Wang, H., Luo, Y.: A comparison of pre-trained vision-and-language models for multimodal representation learning across medical images and reports. arXiv:2009.01523 (2020)
Liu, X., et al.: A comparison of deep learning performance against health-care professionals in detecting diseases from medical imaging: a systematic review and meta-analysis. Lancet Digital Health 1(6), e271–e297 (2019)
Lu, J., Batra, D., Parikh, D., Lee, S.: ViLBERT: pretraining task-agnostic visiolinguistic representations for vision-and-language tasks. In: Advances in Neural Information Processing Systems, pp. 13–23 (2019)
Nunes, N., Martins, B., André da Silva, N., Leite, F., J. Silva, M.: A multi-modal deep learning method for classifying chest radiology exams. In: Moura Oliveira, P., Novais, P., Reis, L.P. (eds.) EPIA 2019. LNCS (LNAI), vol. 11804, pp. 323–335. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30241-2_28
OpenI: Indiana university - chest X-rays (PNG images) https://openi.nlm.nih.gov/faq.php
Raghu, M., Zhang, C., Kleinberg, J., Bengio, S.: Transfusion: understanding transfer learning for medical imaging. In: Advances in Neural Information Processing Systems, vol. 32. Curran Associates, Inc. (2019)
Rajpurkar, P., et al.: CheXNet: radiologist-level pneumonia detection on chest X-rays with deep learning. arXiv:1711.05225 (2017)
Rezende, D.J., Mohamed, S., Wierstra, D.: Stochastic backpropagation and approximate inference in deep generative models. arXiv:1401.4082 (2014)
Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE ICCV, pp. 618–626 (2017)
Sohn, K., Lee, H., Yan, X.: Learning structured output representation using deep conditional generative models. In: Advances in Neural Information Processing Systems, pp. 3483–3491 (2015)
Su, W., et al.: VL-BERT: pre-training of generic visual-linguistic representations. arXiv:1908.08530 (2019)
Tan, H., Bansal, M.: LXMERT: learning cross-modality encoder representations from transformers. arXiv:1908.07490 (2019)
Tobore, I., et al.: Deep learning intervention for health care challenges: some biomedical domain considerations (2019)
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)
Vig, J.: A multiscale visualization of attention in the transformer model. arXiv:1906.05714 (2019)
Wang, X., Peng, Y., Lu, L., Lu, Z., Bagheri, M., Summers, R.M.: ChestX-ray8: hospital-scale chest x-ray database and benchmarks on weakly-supervised classification and localization of common thorax diseases. In: Proceedings of the IEEE CVPR, pp. 2097–2106 (2017)
Wang, X., Peng, Y., Lu, L., Lu, Z., Summers, R.M.: TieNet: text-image embedding network for common thorax disease classification and reporting in chest X-rays. In: Proceedings of the IEEE CVPR, pp. 9049–9058 (2018)
Weiskopf, N.G., Hripcsak, G., Swaminathan, S., Weng, C.: Defining and measuring completeness of electronic health records for secondary use. J. Biomed. Inform. 46(5), 830–836 (2013)
Wu, Y., et al.: Google’s neural machine translation system: bridging the gap between human and machine translation. arXiv:1609.08144 (2016)
Xiao, C., Choi, E., Sun, J.: Opportunities and challenges in developing deep learning models using electronic health records data: a systematic review. J. Am. Med. Inform. Assoc. 25(10), 1419–1428 (2018)
Xue, Y., Huang, X.: Improved disease classification in chest X-Rays with transferred features from report generation. In: Chung, A.C.S., Gee, J.C., Yushkevich, P.A., Bao, S. (eds.) IPMI 2019. LNCS, vol. 11492, pp. 125–138. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20351-1_10
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
van Sonsbeek, T., Zhen, X., Worring, M., Shao, L. (2021). Variational Knowledge Distillation for Disease Classification in Chest X-Rays. In: Feragen, A., Sommer, S., Schnabel, J., Nielsen, M. (eds) Information Processing in Medical Imaging. IPMI 2021. Lecture Notes in Computer Science(), vol 12729. Springer, Cham. https://doi.org/10.1007/978-3-030-78191-0_26
Download citation
DOI: https://doi.org/10.1007/978-3-030-78191-0_26
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-78190-3
Online ISBN: 978-3-030-78191-0
eBook Packages: Computer ScienceComputer Science (R0)