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Abstract. Disease classification relying solely on imaging data attracts
great interest in medical image analysis. Current models could be fur-
ther improved, however, by also employing Electronic Health Records
(EHRs), which contain rich information on patients and findings from
clinicians. It is challenging to incorporate this information into disease
classification due to the high reliance on clinician input in EHRs, lim-
iting the possibility for automated diagnosis. In this paper, we propose
variational knowledge distillation (VKD), which is a new probabilistic
inference framework for disease classification based on X-rays that lever-
ages knowledge from EHRs. Specifically, we introduce a conditional la-
tent variable model, where we infer the latent representation of the X-ray
image with the variational posterior conditioning on the associated EHR
text. By doing so, the model acquires the ability to extract the visual
features relevant to the disease during learning and can therefore perform
more accurate classification for unseen patients at inference based solely
on their X-ray scans. We demonstrate the effectiveness of our method on
three public benchmark datasets with paired X-ray images and EHRs.
The results show that the proposed variational knowledge distillation
can consistently improve the performance of medical image classification
and significantly surpasses current methods.

Keywords: Multi-modal learning · Medical Image Classification · Elec-
tronic Health Records · Knowledge Distillation · Variational Inference.

1 Introduction

Advances in deep learning for medical imaging have been shown to perform on
par or better than clinicians on an increasing number of tasks [17]. The expansion
of data and computational resources has played a large role in this. In fact,
while deep learning models and clinicians may seem very different at first, their
underlying prediction process is similar, as they both acquire experience through
data. However, clinicians currently have an advantage; their decision making
is not only based on medical images. In addition to their own knowledge and
experience, information on the patient can also provide important guidance when
making a diagnosis. Thus, there is an opportunity for deep learning methods to
be even further improved if they could also incorporate this information.
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EHRs contain rich information about the patients, which could be explored
for disease classification based on X-ray scans. Besides important patient infor-
mation, e.g., disease history, sex and reason for hospital admission, they record
observations and findings that are usually provided by clinicians from reading
the scans in combination with their professional knowledge and clinical experi-
ences. It has been demonstrated that (longitudinal) EHR data can be used as
a diagnosis predictor [2, 7, 28, 35]. Thus it would be greatly helpful to if we can
leverage EHRs to support clinicians by improving the performance of various
automated medical imaging tasks.

However, it is a challenging problem to incorporate information from EHRs
into medical image analysis due to several reasons. Firstly, representing EHR in
models is complicated by the large variety in content, structure, language, noise,
random errors, and sparseness [2, 28]. Secondly, there are privacy concerns in
using medical images associated with (longitudinal) EHR data, as their combined
use limits the extent of possible anonymization [33]. However the major limiting
factor is that combining visual and textual modalities adds complexity, because
it requires methods that span both vision and language processing fields.

From a clinical point of view, the usage of EHR data available during testing
or model deployment should be approached with caution, because EHR data
is not always available coupled to the patient at the time of diagnosis. It is
important to keep in mind that tasks performed on medical data are only relevant
in a clinical setting. Requiring EHR data as input for a model would prevent
this model from being completely automated, because the EHR still needs to
be created by a clinician. However, this is not a problem during training when
access to large databases of medical images and EHRs is possible. Therefore,
to effectively utilize EHRs in combination with medical images, they should be
optimally utilized during training time, with minimum reliance on them during
testing. In a clinical setting, this would make most sense, because we would like
the model to assist clinicians rather than relying on them.

It is particularly appealing to leverage information in EHRs for disease classi-
fication of X-ray scans. This is because chest X-rays are one of the most common
scans in clinical routines due to their ease of acquiring and low cost, offering an
effective and efficient tool for screening various diseases. A consequence of this
is a large quantity of scans, the bulk of which will fall under a frequent set of
diagnoses. Both the potential usefulness of EHRs and importance of automated
diagnosis in clinical setting make X-rays an excellent application domain.

In this work, we tackle the challenging scenario where the EHRs are only
available in the learning stage but not at inference time. We propose varia-
tional knowledge distillation, a new probabilistic inference framework to lever-
age knowledge in EHRs for medical image classification. We make three-fold
contributions: i) We propose the first probabilistic inference framework for joint
learning from EHRs and medical images, which enables us to explore multi-
modal data during training and perform disease classification relying only on
images during testing. ii) We introduce variational knowledge distillation, which
enables the model to extract visual features relevant to disease by transferring
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useful information from EHRs to images. iii) We demonstrate the effectiveness
of the proposed method in X-ray disease classification and achieve consistently
better performance than counterpart methods.

2 Related Work

In recent years there has been an increase in methods exploring automated diag-
nosis from radiology images. This can be linked to the increasing availability of
public chest X-ray datasets, such as ChestX-ray14 [31], CheXpert [11], OpenI [20]
and MIMIC-CXR [12], where the latter two also contain associated EHR.

The most notable image-based approach for chest X-ray classification is
ChexNet [22]. Rajpurkar et al. showed that diagnosis using a deep architecture
based on DensetNet-121 [9] can exceed radiologist performance. Wang et al. [31]
also reached high performance using pre-trained convolutional neural network
(CNN). Recently, Chen et al. [3] introduced a graph based model which exceeds
the performance of the prior methods in this classification task.

Current multi-modal approaches for chest X-ray classification rely on EHR
inputs during both training and testing. A common denominator in these meth-
ods is that image and EHR features are joined through an attention mechanism.
Nunes et al. [19] proposed a method which requires a chest X-ray and its asso-
ciated EHR to generate a diagnosis. Wang et al. [32] require a similar input but
use an auxiliary EHR generation task in an end-to-end CNN-recurrent neural
network (RNN) architecture to improve classification. Related to this, Xue et
al. [36] generate EHRs to enhanced image-based classification. No EHR input is
required or used during both training and testing. Where our approach uses both
image and EHR during training, but only images during testing, their approach
only requires images in both training and testing.

Recent advances in the general non-medical vision-language field have been
accelerated by the emergence of contextual Transformer [29] based language
models such as BERT [5]. Moreover in visual-question-answering (VQA), models
such as LXMERT [27], VL-BERT [26], VILBERT [18] and Uniter [4] vastly
outperform traditional state-of-the-art models. The Transformer architecture has
proven to be highly effective in multi-modal settings. Recently, Li et al. [16]
showed how these vision-language models can be applied to the medical domain.
Specifically, they showed that Transformer-based vision-language models result
in high performance on medical datasets containing chest X-ray images and
paired EHRs, requiring both modalities as input during training and testing.

3 Methodology

We formulate the disease classification from medical images as a conditional vari-
ational inference problem. We introduce a conditional latent variable model that
infers the latent representations of X-Ray images. The knowledge is transferred
from the EHR to X-rays scans by making the variational posterior conditioned on
the associated EHR text. The model learns the ability to extract visual features
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that are relevant to the disease guided by the associated EHR in the learning
stage. At inference time it is able to make accurate predictions relying solely on
X-ray scans. We start with preliminaries on variational auto-encoders [15, 23],
based on which we derive our probabilistic modeling of disease classification on
X-rays and variational knowledge distillation from EHRs.

3.1 Preliminaries

The variational auto-encoder (VAE) [15,23] is a powerful generative model that
combines graphical models and deep learning. Given an input x from a data
distribution p(x), we aim to find its representation z in a latent space, from
which we can generate new images that are similar to x. The objective of the
VAE is to maximize what is called the evidence lower bound (ELBO), as follows:

LVAE = E[log p(x|z)]−DKL[q(z|x)||p(z)], (1)

where q(z|x) is the variational posterior for approximating the exact posterior
p(z|x) and p(z) is the prior distribution over z, which is usually set to an isotropic
Gaussian distribution N (0, I). The VAE offers an effective probabilistic infer-
ence framework to learn latent representations in a unsupervised way, which we
explore for the supervised, disease classification task by introducing conditioning
into the probabilistic framework.

3.2 Disease Classification by Conditional Variational Inference

Since disease classification based on X-rays is a supervised learning problem, we
resort to conditional variational inference, which has shown great effectiveness
in structure prediction tasks [25]. Given an input X-ray image xI associated
with its class label y, we introduce the latent variable zI as the representation
of xI . From a probabilistic perspective, predicting of the class label y amounts
to maximizing the following conditional log-likelihood:

log p(y|xI) = log

∫
p(y|xI , zI)p(zI |xI)dzI , (2)

where p(zI |xI) is the conditional prior over the latent representation zI (See
Fig. 1). To find the posterior p(zI |xI ,y) over zI , we usually resort to a variational
distribution q(zI) by minimizing the Kullback-Leibler (KL) divergence

DKL

[
q(zI)||p(zI |xI ,y)

]
. (3)

By applying Bayes’ rule, we obtain

LCVI = E
[

log p(y|xI , zI)
]
−DKL

[
q(zI)||p(zI |xI)

]
, (4)

which is the ELBO of the conditionally predictive log-likelihood in Eq. (2) and
can be directly maximized to learn the model parameters. Note that maximizing
the ELBO is equivalent to minimizing the KL divergence in Eq. (3). Actually,
we are free to design the variational posterior q(z). In this work, we incorporate
the information from EHRs into the inference of latent representation by making
the variational posterior dependent on the associated EHRs during learning.
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3.3 Knowledge Distillation from EHRs

We introduce a new variational posterior that depends on the corresponding
EHR text xT , which enables us to distill knowledge from EHRs to the rep-
resentations of images in the latent space. To be more specific, we design the
variational posterior as q(zT |xT ), shown in Fig. 1, which gives rise to a new
ELBO, as follows:

LVKD = E
[

log p(y|xI , zI)
]
−DKL

[
q(zT |xT )||p(zI |xI)

]
. (5)

By maximizing the above ELBO, the distributional distance in terms of KL
divergence between the latent representations of the X-ray image and its asso-
ciated EHR text is minimized. This encourages the rich knowledge contained in
the EHR to be transferred to the image representations.

In order to extract from the EHR the most relevant information for accu-
rate disease classification, the latent representation zT should also be maximally
predictive of the disease. This can be achieved by maximizing the mutual in-
formation I(ZT , Y ) between ZT and Y , which is intractable. Instead, we can
maximize its variational lower bound inspired by [1], as follows:

I(ZT , Y ) ≥
∫
p(xT )p(y|xT )p(zT |xT ) log q(y|zT )dxT dydzT = LMI, (6)

where q(y|zT ) is the variational approximation of the true predictive distribution
p(y|zT ). Likewise, we can calculate the empirical approximation of the term on
the right hand side in Eq. (6) by following [1]:

LMI ≈
1

N

N∑
n=1

∫
p(zT |xn

T ) log q(yn|zT )dzT , (7)

where n is the number of the X-ray image and EHR text pairs. In practice, LMI

is implemented as a cross entropy loss.

3.4 Empirical Objective Function

By combining Eqs. (5) and (6), we obtain the following empirical objective func-
tion for optimization:

L̃VKD =− 1

N

N∑
n=1

[ 1

M

M∑
m=1

log p(yn|xI , z
(m)
I )− 1

L

L∑
`=1

log q(yn|z(`)T )

+DKL

[
q(zT |xn

T )||p(zI |xn
I )
]]
,

(8)

where z
(m)
I ∼ p(zI |xI), z

(l)
T ∼ q(zT |xT ), and L and M are the number of Monte

Carlo samples. Note that we take the variational posterior q(zT |xT ) in Eq. (5) as
the posterior p(zT |xT ) in Eq. (7). The resultant objective combines the strengths
of the conditional variational auto-encoder and the variational information bot-
tleneck, resulting in a new variational objective for knowledge distribution from
EHR texts to X-rays for disease classification. Optimization with L̃VKD is a pro-
cess through which the model learns to read X-ray scans like a radiologist to
find the relevant visual features to diseases.
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Chest X-ray

EHR ClinicalBERT

CNN-
Backbone

Prior 
p(zI|xI)

Posterior
q(zT|xT)

Latent space
zI

Latent space
zT

Disease classification
p(y|xI,zI)

Mutual Information
I(ZT,Y)

KL divergence

FINAL	REPORT
EXAMINATION:	CHEST	(PORTABLE	AP)

INDICATION:	__M	with	chest	Congestion,
pan,	cough	//	please	eval	for	pna.

FINDINGS:	No	focal	consolidation	is	seen.	
There	is	no	pleural	effusion	or
pneumothorax.	The	cardiac	and	mediastinal
silhouettes	are	unremarkable.	

IMPRESSION:	No	focal	consolidation	to
suggest	pneumonia.

Fig. 1: Illustration of the proposed variational knowledge distillation from EHR
texts to X-ray images.

3.5 Implementation with Neural Networks

We implement the optimization objective with deep neural networks (see Fig. 1)
by adopting the amortization technique [15]. Both the variational posterior
q(zT |xT ) and the prior p(zI |xI) are parameterized as diagonal Gaussian distri-
butions. To enable back propagation, we adopt the reparameterization trick [15]
for sampling z: z(`) = f(x, ε(`)) with ε(`) ∼ N (0, I), where f(·) is a deterministic
differentiable function.

In prior p(zI |xI), xI is taken as the representation of the X-ray image from
a CNN. The inference network of the distribution parameters is implemented by
a multi-layer perceptron (MLP). xT in the variational posterior q(zT |xT ) is gen-
erated through the use of deep contextualized word embeddings. The successful
BERT [5] language model based on the Transformer [29] is used. More specifi-
cally, we use a pre-trained version of this model fine-tuned on a database with
over two million EHRs [13]: ClinicalBERT [10]. To avoid computationally costly
fine-tuning, the weights of ClinicalBERT are frozen and a brief fine-tuning step
is applied by passing the embeddings through a single trainable Transformer en-
coder block (∼ 1/12 the size of ClinicalBERT). Similar to p(zI |xI), the posterior
q(zT |xT ) is also generated by an MLP.

Algorithm 1 demonstrates the learning process, when the model requires a
multi-modal input: an image and the associated EHR. Once trained, the model
performs disease classification based on new X-ray scans without the need of an
EHR input at inference time, as can be seen in Algorithm 2.

Algorithm 1: Learning

Input: Training data: (xn
I ,x

n
T ,y

n), n = 1, ..., N,
Output: Latent space distributions p(zI |x), q(zT |xT ),

1 while not converged: do

2 Draw Monte Carlo samples z
(m)
I and z

(`)
T from p(zI |xn

I ) and
q(zT |xn

T ), respectively

3 Estimate the prediction distributions: p(y|xn
I , z

(m)
I ) and q(y|z(`)T )

4 Compute L̃VKD in Eq. (8)

5 Update models weights via gradient descent on L̃VKD
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Algorithm 2: Inference

Input: Testing data with only the X-Ray images xj
I .

Output: Prediction class label y
1 Draw Monte Carlo samples z

(`)
I from the conditional prior p(zI |xj

I)

2 Estimate the prediction distribution p(y|xj
I , z

(`)
I )

4 Experiments

4.1 Datasets

Three public chest X-ray datasets are used: 1) MIMIC-CXR [12] is the largest
publicly available dataset containing full-text structured EHR and accompanying
annotated chest X-rays [12]. The dataset contains 377, 110 chest x-rays associ-
ated with 227, 827 anonymized EHRs. Each EHR is associated with (multiple)
frontal and/or saggital X-ray views, each labelled according to specific classes
(e.g. atelectasis, pneumothorax and pneumonia). 2) OpenI [20] is a similar pub-
lic dataset with 7, 470 chest X-rays associated with 3, 955 anonymized EHRs. 3)
Chest X-ray14 [31] contains 112, 120 chest X-rays, without associated EHRs.
Paired EHRs exist for this dataset but they are not publicly available. Therefore,
we use this dataset for testing but not for training.

Each image-EHR pair in these datasets is labelled according to a rule-based
labelling procedure based on the EHR for fourteen distinct classes. MIMIC-CXR
is labelled according to a different labeller [11] than Chest X-ray14 [31]. These
different labelling procedures have an overlap in seven out of fourteen label
classes. In this paper the classification labels in MIMIC-CXR are followed.

4.2 Experimental Settings

X-ray images are normalized and standardized to grayscale with dimensions of
224× 224, to align them with the DenseNet-121 CNN backbone, pre-trained on
ImageNet [8]. Pre-trained CNN backbones have been proven effective in similar
medical applications [21], and DenseNet-121 specifically has been proven ideal
for X-ray images [22, 36]. Each EHR is tokenized according to WordPiece [34]
tokenization, which has a library of around 30000 tokens. Each tokenized EHR is
preceded by a [CLS] classification token and ended with a [SEP ] token, following
the methodology used in [5, 10]. The maximum number of tokens is set to 256.
Shorter EHRs are zero padded to obtain text embeddings of the same sizes. The
size of latent spaces zI and zT is set to an empirically determined value of 512.
Two-layer MLPs with layer sizes {512, 512} are used for the amortized inference
of the prior and variational posterior. A dropout rate of 0.5 is applied to all
layers, except the CNN backbone and the final layer in the generation of latent
space z, to which no dropout is applied. These architectures are trained on an
NVIDIA RTX 2080ti GPU, using Adam [14] optimization for a duration defined
by early stopping with a tolerance of 1%.
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A common problem in optimizing variational architectures is KL vanishing.
To prevent this, cyclical KL annealing [6] is applied according to Eq. 9, where
the KL loss is multiplied with βt. g(τ) is a monotonically increasing function, T
is the number of batch iterations, t the current iteration, R (=0.5) determines
the annealing grade and C (=4) is the number of annealing cycles per epoch:

βt =

{
g(τ), τ ≤ R
1, τ > R

}
, where τ =

mod(t− 1, [T/C])

T/C
(9)

4.3 Results

State-of-the-Art Comparison. The performance of our architecture in com-
parison with earlier works on image-based chest X-ray classification [19, 22, 31,
32, 36] is shown in Table 1. We report the results of the proposed method with
and without variational knowledge distillation (i.e., no EHR). Results of our
proposed method on the Chest X-ray14 dataset are obtained by fine-tuning a
model pre-trained on MIMIC-CXR. Note that the fine-tuning step is necessary
to alleviate domain shift between different datasets. Results on the OpenI and
MIMIC-CXR datasets are obtained without any specific pre-training on radiol-
ogy images from other datasets.

Results on the OpenI and MIMIC-CXR datasets show the performance gain
due to knowledge distillation, where the performance improvement is consis-
tent on the latter vastly larger dataset. It is worth mentioning that the high
performance on Chest X-ray14 further indicates that the proposed variational
knowledge distillation is transferable between datasets, even when the new tar-

Chest X-ray14 Open-I MIMIC-CXR

[22] [36] [31] [3] Ours [31] [19]
Ours

(no EHR)
Ours

Ours
(no EHR)

Ours

No Finding - - - - - - - 0.711 0.720 0.825 0.827
Enlarged
Cardiomediastinum

- - - - - - - - - 0.589 0.838

Cardiomegaly 0.889 0.892 0.810 0.893 0.899 0.803 - 0.837 0.851 0.739 0.758
Lung Opacity - - - - - - - 0.720 0.698 0.698 0.695
Lung Lesion - - - - - - - 0.539 0.710 0.663 0.690
Edema 0.888 0.898 0.805 0.850 0.893 0.799 - 0.897 0.923 0.832 0.861
Consolidation 0.790 0.813 0.703 0.751 0.819 0.790 - 0.859 0.652 0.731 0.783
Pneumonia 0.768 0.767 0.658 0.739 0.781 0.642 - 0.610 0.619 0.618 0.627
Atelectasis 0.809 0.822 0.700 0.786 0.825 0.702 - 0.771 0.797 0.725 0.749
Pneumothorax 0.889 0.870 0.799 0.876 0.903 0.631 - 0.784 0.637 0.721 0.758
Pleural Effusion 0.864 0.881 0.759 0.832 0.871 0.890 - 0.904 0.858 0.864 0.892
Pleural Other - - - - - - - 0.637 0.876 0.731 0.776
Fracture - - - - - - - 0.486 0.532 0.557 0.698
Support Devices - - - - - - - 0.553 0.581 0.854 0.897

Average - 0.842 0.722 0.826 0.872 0.719 0.621 0.837 0.885 0.807 0.839

Table 1: Comparison of AUC values per class for NIH chest X-ray14 (partial),
OpenI and MIMIC-CXR datasets.
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OpenI MIMIC-CXR

Full architecture 0.885 0.839

w/o LMI (Eq. 7) 0.873 0.832

w/o VKD (no EHR) 0.837 0.807

Table 2: AUC scores for varying archi-
tecture compositions.

Size of z OpenI MIMIC-CXR

64 0.814 0.775

128 0.870 0.829

512 - default 0.885 0.839

1024 0.891 0.842

Table 3: AUC scores for varying
size of latent space z.

get dataset does not contain EHRs. Note that our approach outperforms all
previous approaches for chest X-ray classification.

Ablation Studies. To verify the effectiveness of all elements in the proposed
architecture two ablation studies are conducted. In the first ablation study, LMI

(Eq. (7)) is left out of the objective function, thus there is no specific requirement
for zT . Moreover, only the classification objective from the image branch is taken
into account, removing the KL term, which results in a regular image-based
classifier. This first ablation study (Table 2) reveals that the major contributing
factor to the performance of our method shows to be variational knowledge
distillation, whereas the addition of the objective function in the EHR branch
(LMI) has a relatively smaller, yet considerable effect. Secondly, we test the
effect of the size of latent space z on the performance (Table 3). It appears that
increasing the size of z can improve model performance, while this effect tends
to be smaller with larger values of z. The current value of z was chosen to be
512, which maximizes performance against computational cost.

Visualizations. The difference between zI with and without variational knowl-
edge distillation is shown in Fig. 2. With variational knowledge distillation a
structurenedness in classes within zI can be observed, whereas without it there

(a) Without VKD (b) With VKD

Fig. 2: t-SNE embeddings of latent space zI with and without VKD, overlayed
with class labels, showing that VKD causes structuring of zI .
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Final report

Indication : leukocytosis and left upper extremity blood clot .
pa and lateral views of the chest .

Findings : the heart size is top normal . the aorta is slightly
unfolded . the pulmonary vascularity is normal . the lungs are clear .
no focal consolidation , pleural effusion or pneumothorax is present .
there are mild degenerative changes in the thoracic spine .

Impression : no acute cardiopulmonary abnormality .

Final report

Indication : / M s / p left tkr ; desat , o2 requirement /
pneumonia ?
Technique : chest ( portable ap )

Impression : heart size is substantially enlarged although potentially
exaggerated by projection . there is right basal opacity concerning
for infectious process . small amount of pleural effusion is most likely
present . no pulmonary edema is seen . pacemaker leads terminate
in right atrium and right ventricle most likely . hardware within the
lumbar spine is present .

Fig. 3: Importance of words and image regions for two image-EHR pairs. Word-
Piece tokens of the EHRs are averaged if needed to form full words. Darker red
means higher importance.

seems to be more reliance on image tokens directly passed to the classification
head, consequently resulting in a less structured zI . In Fig. 3 weight visualiza-
tions for the final CNN-layer with Grad-cam [24] and the final Transformer layer
with BertViz [30] are shown for images and EHRs respectively. As can clearly
be seen the visual focus is correctly on the lung region. Weights of the EHR
tokens show a clear emphasis on important nouns and adjectives in the EHR.
Verbs and prepositions show lower weights. These visualizations provide an in-
tuitive illustration that our model is able to extract visual features relevant to
the disease due to the proposed variational knowledge distillation.

5 Conclusion

In this paper, we propose a new probabilistic inference framework of multi-
modal learning for disease classification based on X-rays by leveraging EHRs.
We developed a latent variable model to learn latent representations of X-ray
images. We introduce variational knowledge distillation that enables the model to
acquire the ability to extract visual features relevant to the disease. This strategy
enables us to incorporate the knowledge in EHRs during training, without relying
on them in the testing stage. We conduct experiments on the current largest and
most widely used chest X-ray - EHR datasets: MIMIC-CXR and OpenI, showing
the benefit of variational knowledge distillation. Moreover we demonstrate our
method performs well on Chest X-ray14 with only images by pre-training on
MIMIC-CXR, which indicates its strong transfer ability across datasets.
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