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Preface

This volume contains the papers that were presented at the 18th International Con-
ference on the Integration of Constraint Programming, Artificial Intelligence, and
Operations Research (CPAIOR 2021), held in Vienna, Austria as a hybrid
physical/virtual conference in response to the COVID-19 pandemic.

The conference received a total of 87 submissions, including 75 regular paper and
12 extended abstract submissions. The regular papers reflect original unpublished
work, whereas the extended abstracts contain either original unpublished work or a
summary of work that was published elsewhere. Each regular paper was reviewed by at
least three Program Committee members. The reviewing phase was followed by an
author response period and a general discussion by the Program Committee. The
extended abstracts were reviewed for appropriateness for the conference. At the end
of the review period, 30 regular papers were accepted for presentation during the
conference and publication in this volume, and 6 abstracts were accepted for short
presentation at the conference. Among the 30 regular papers, two were published
directly in the journal Constraints via a fast-track review process. The abstracts of these
papers can be found in this volume.

In addition to the regular papers and extended abstracts, three invited talks, whose
abstracts and/or articles can be found in this volume, were given by Maya Gupta
(Didero, USA), Adam Elmachtoub (Columbia University, USA), and Nikolaj Bjørner
(Microsoft Research, USA).

The conference program included a Master Class on the topic “Explanation and
Verification of Machine Learning Models” organized by Alexey Ignatiev and Nina
Narodytska with invited talks by Alessio Lomuscio (Imperial College London, UK),
Gagandeep Singh (University of Illinois Urbana-Champaign, USA), Guy Katz
(Hebrew University of Jerusalem, Israel), Guy Van den Broeck (University of
California, Los Angeles, USA), João Marques-Silva (CRNS, France), and Sameer
Singh (University of California, Irvine, USA).

Of the regular papers accepted to the conference a committee comprising of myself,
Helmut Simonis, and Louis-Martin Rousseau selected for the Best Paper Award the
paper “Between Steps: Intermediate Relaxations between big-M and Convex Hull
Formulations” by Jan Kronqvist, Ruth Misener, and Calvin Tsay and selected for the
Best Student Paper Award the paper “Improving the filtering of Branch-and-Bound
MDD Solver” by Xavier Gillard, Vianney Coppé, Pierre Schaus, and André Augusto
Cire.

We acknowledge the generous support of our sponsors including, at the time of
writing, the Vienna Center for Logic and Algorithms (VCLA), Artificial Intelligence
Journal (AIJ), Springer, and TU Wien.

July 2021 Peter J. Stuckey
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Why You Should Constrain Your Machine
Learned Models

Maya Gupta

Didero, USA
founders@didero.com

Abstract. Common use of machine learning is to gather what training examples
one can, train a flexible model with some smoothness regularizers, test it on a
held-out set of random examples, and *hope* it works well in practice. But we
will show that by adding constraints, we can prepare our models better for their
futures, and be more certain of their performance. Based on 8 years of experi-
ence at Google researching, designing, training, and launching hundreds of
machine-learned models, I will discuss dozens of ways that we found one can
constrain ML models to produce more robust, fairer, safer, more accurate
models that are easier to debug and that when they fail, do so more predictably
and reasonably. This talk will focus on two classes of model constraints: shape
constraints, and rate constraints. The most common shape constraint is mono-
tonicity, and it has long been known how to learn monotonic functions over one
input using isotonic regression. We will discuss new R&D about 6 different
practically useful shape constraints, and how to impose them on flexible,
mulit-layer models. The second class of constraints, rate constraints, refers to
constraints on a classifiers' output statistics, and is commonly used to make
classifiers act responsibly for different groups. For example, we may constrain a
classifier used globally to be at least 80% accurate on training examples from
India or China, as well as minimizing classification errors on average. We will
point listeners to Google's open-source Tensor Flow libraries to impose these
constraints, and papers with more technical detail.

https://orcid.org/0000-0002-4925-5632


Contextual Optimization: Bridging Machine
Learning and Operations

Adam Elmachtoub

Columbia University, New York, USA
adam@ieor.columbia.edu

Abstract. Many operations problems are associated with some form of a pre-
diction problem. For instance, one cannot solve a supply chain problem without
predicting demand. One cannot solve a shortest path problem without predicting
travel times. One cannot solve a personalized pricing problem without pre-
dicting consumer valuations. In each of these problems, each instance is char-
acterized by a context (or features). For instance, demand depends on prices and
trends, travel times depend on weather and holidays, and consumer valuations
depend on user demographics and click history. In this talk, we review recent
results on how to solve such contextual optimization problems, with a particular
emphasis on techniques that blend the prediction and decision tasks together.

https://orcid.org/0000-0003-0729-4999


Complete Symmetry Breaking Constraints
for the Class of Uniquely Hamiltonian Graphs

Avraham Itzhakov and Michael Codish

Department of Computer Science,
Ben-Gurion University of the Negev,

Beer-Sheva, Israel
{itzhakoa,mcodish}@cs.bgu.ac.il

Abstract. Graph search problems are fundamental in graph theory. Such
problems include: existence problems, where the goal is to determine whether a
simple graph with certain graph properties exists, enumeration problems, which
are about finding all solutions modulo graph isomorphism, and extremal prob-
lems, where we seek the smallest/largest solution with respect to some target
such as the number of edges or vertices in a solution. Solving graph search
problems is typically hard due to the enormous search space and the large
number of symmetries.

One common approach to break symmetries in constraint programming is to
add symmetry breaking constraints which are satisfied by at least one member of
each isomorphism class. A symmetry breaking constraint is called complete if it
is satisfied by exactly one member of each isomorphism class and partial
otherwise. A universal measure for the size of a symmetry breaking constraint is
the size of its representation in propositional logic. All known techniques to
define complete symmetry breaking constraints for graph search problems are
based on predicates which are exponential in size. There is no known polyno-
mial size complete symmetry breaking constraint for graph search problems.

This paper introduces, for the first time, a complete symmetry breaking
constraint of polynomial size for a significant class of graphs: the class of
uniquely Hamiltonian graphs. This is the class of graphs that contain exactly one
Hamiltonian cycle. We introduce a canonical form for uniquely Hamiltonian
graphs and prove that testing whether a given uniquely Hamiltonian graph is
canonical can be performed efficiently. Based on this canonicity test, we con-
struct a complete symmetry breaking constraint of polynomial size which is
satisfied only by uniquely Hamiltonian graphs which are canonical. We apply
the proposed symmetry breaking constraint to determine the, previously
unknown, smallest orders for which uniquely Hamiltonian graphs of minimum
degree 3 and girths 3 and 4 exist.

Given that it is unknown if there exist polynomial sized complete symmetry
breaking constraints for graphs, this paper makes a first step in the direction of
identifying specific classes of graphs for which such constraints do exist.

Supported by the Israel Science Foundation, grant 625/17.



Variable Ordering for Decision Diagrams:
A Portfolio Approacho

Anthony Karahalios and Willem-Jan van Hoeve

Carnegie Mellon University, Pittsburgh PA 15213, USA
{akarahal,vanhoeve}@andrew.cmu.edu

Abstract. Relaxed decision diagrams have recently been successfully applied
within a range of solution methodologies for discrete optimization, including
constraint programming, integer linear programming, integer nonlinear pro-
gramming, and combinatorial optimization. The variable ordering is often of
crucial importance for their effectiveness. For example, Bergman et al. [1, 2]
demonstrate that a variable ordering that yields a small exact diagram typically
also provides stronger dual bounds from the relaxed diagram. When decision
diagrams are built from a single top-to-bottom compilation, dynamic variable
orderings can be very effective. For example, a recent work by Cappart et al. [3]
deploys deep reinforcement learning to dynamically select the next variable
during compilation. Dynamic variable orderings are less applicable, however, to
compilation via iterative refinement, in which case the ordering must be spec-
ified in advance. In this work, we consider variable ordering strategies for the
latter case.

Oftentimes there is no single variable ordering strategy that dominates all
others for a given set of problem instances. Selecting the best ordering, or more
generally the best algorithm, from a set of alternatives is a well-studied problem
in artificial intelligence, in the context of algorithm portfolios. There are several
ways to construct an algorithm portfolio: using static or dynamic features,
formulating predictive models at the algorithm or portfolio level, predicting one
algorithm to run per instance or creating a schedule of algorithms to run, using a
fixed portfolio or updating it online [4]. We consider several different portfolio
mechanisms: an offline predictive model of the single best algorithm using
classifiers, an online low-knowledge algorithm selection, a static uniform
time-sharing portfolio, and a dynamic online time allocator.

As a case study, we consider the graph coloring problem, for which a
decision diagram approach was recently introduced [5, 6]. It uses an iterative
refinement procedure much like Benders decomposition or lazy-clause genera-
tion, by repeatedly refining conflicts in the diagram until the solution is conflict
free. Our experimental results show that predictive methods using classification
models or exploration phases can lead to more instances solved optimally.
However, these methods may lead to delayed optimality results on problem
instances that are easy to solve. Another insight is that a mixed portfolio can
outperform a clairvoyant selection of the best individual ordering for each

Partially supported by Office of Naval Research Grant No. N00014-18-1-2129 and National Science
Foundation Award #1918102.



instance, by yielding a solution with a unique best upper bound from one
ordering and a unique best lower bound from a different ordering.
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