Abstract
Knowledge tracing refers to a family of methods that estimate each student’s knowledge component/skill mastery level from their past responses to questions. One key limitation of most existing knowledge tracing methods is that they can only estimate an overall knowledge level of a student per knowledge component/skill since they analyze only the (usually binary-valued) correctness of student responses. Therefore, it is hard to use them to diagnose specific student errors. In this paper, we extend existing knowledge tracing methods beyond correctness prediction to the task of predicting the exact option students select in multiple choice questions. We quantitatively evaluate the performance of our option tracing methods on two large-scale student response datasets. We also qualitatively evaluate their ability in identifying common student errors in the form of clusters of incorrect options across different questions that correspond to the same error.
This work is supported by the National Science Foundation under grant IIS-1917713. We also thank the reviewers for their constructive feedback.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adams, D.M., et al.: Using erroneous examples to improve mathematics learning with a web-based tutoring system. Comput. Hum. Behav. 36, 401–411 (2014)
Anderson, J.R., Jeffries, R.: Novice LISP errors: undetected losses of information from working memory. Hum.-Comput. Interact. 1(2), 107–131 (1985)
Berg, R., Kipf, T.N., Welling, M.: Graph convolutional matrix completion. arXiv preprint arXiv:1706.02263 (2017)
Brown, J.S., Burton, R.R.: Diagnostic models for procedural bugs in basic mathematical skills. Cogn. Sci. 2(2), 155–192 (1978)
Cen, H., Koedinger, K., Junker, B.: Learning factors analysis – a general method for cognitive model evaluation and improvement. In: Ikeda, M., Ashley, K.D., Chan, T.-W. (eds.) ITS 2006. LNCS, vol. 4053, pp. 164–175. Springer, Heidelberg (2006). https://doi.org/10.1007/11774303_17
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, W.P.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)
Choffin, B., Popineau, F., Bourda, Y., Vie, J.J.: DAS3H: modeling student learning and forgetting for optimally scheduling distributed practice of skills. In: Proceedings of the International Conference on Educational Data Mining, pp. 29–38 (2019)
Choi, Y., et al.: EdNet: a large-scale hierarchical dataset in education. In: Bittencourt, I.I., Cukurova, M., Muldner, K., Luckin, R., Millán, E. (eds.) AIED 2020. LNCS (LNAI), vol. 12164, pp. 69–73. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-52240-7_13
Corbett, A., Anderson, J.: Knowledge tracing: modeling the acquisition of procedural knowledge. User Model. User-Adapt. Interact. 4(4), 253–278 (1994). https://doi.org/10.1007/BF01099821
Doroudi, S., Aleven, V., Brunskill, E.: Where’s the reward? Int. J. Artif. Intell. Educ. 29(4), 568–620 (2019). https://doi.org/10.1007/s40593-019-00187-x
Erickson, J.A., Botelho, A.F., McAteer, S., Varatharaj, A., Heffernan, N.T.: The automated grading of student open responses in mathematics. In: Proceedings of the International Conference on Learning Analytics & Knowledge, pp. 615–624 (2020)
Feldman, M.Q., Cho, J.Y., Ong, M., Gulwani, S., Popović, Z., Andersen, E.: Automatic diagnosis of students’ misconceptions in K-8 mathematics. In: Proceedings of the CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2018)
Feng, J., Zhang, B., Li, Y., Xu, Q.: Bayesian diagnosis tracing: application of procedural misconceptions in knowledge tracing. In: Isotani, S., Millán, E., Ogan, A., Hastings, P., McLaren, B., Luckin, R. (eds.) AIED 2019. LNCS (LNAI), vol. 11626, pp. 84–88. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23207-8_16
Fowlkes, E.B., Mallows, C.L.: A method for comparing two hierarchical clusterings. J. Am. Stat. Assoc. 78(383), 553–569 (1983)
Ghosh, A., Heffernan, N., Lan, A.S.: Context-aware attentive knowledge tracing. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2330–2339 (2020)
Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. MIT Press, Cambridge (2016)
Graves, A., Mohamed, A.R., Hinton, G.: Speech recognition with deep recurrent neural networks. In: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 6645–6649 (2013)
Gu, J., Lu, Z., Li, H., Li, V.O.: Incorporating copying mechanism in sequence-to-sequence learning. arXiv preprint arXiv:1603.06393 (2016)
Gusukuma, L., Bart, A.C., Kafura, D., Ernst, J.: Misconception-driven feedback: results from an experimental study. In: Proceedings of the ACM Conference on International Computing Education Research, pp. 160–168 (2018)
He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.S.: Neural collaborative filtering. In: Proceedings of the International Conference on World Wide Web, pp. 173–182 (2017)
Khajah, M., Huang, Y., González-Brenes, J., Mozer, M., Brusilovsky, P.: Integrating knowledge tracing and item response theory: a tale of two frameworks. In: Proceedings of the International Workshop on Personalization Approaches in Learning Environments, vol. 1181, pp. 7–15 (2014)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Proceedings of the International Conference on Learning Representations (2015)
Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)
Koedinger, K.R., Corbett, A., et al.: Cognitive tutors: technology bringing learning sciences to the classroom. In: The Cambridge Handbook of the Learning Sciences, pp. 61–77 (2006)
Lan, A.S., Studer, C., Baraniuk, R.G.: Matrix recovery from quantized and corrupted measurements. In: IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 4973–4977, May 2014
Lan, A.S., Studer, C., Waters, A.E., Baraniuk, R.G.: Tag-aware ordinal sparse factor analysis for learning and content analytics. In: Proceedings of the 6th International Conference on Educational Data Mining, pp. 90–97, July 2013
Lan, A.S., Vats, D., Waters, A.E., Baraniuk, R.G.: Mathematical language processing: automatic grading and feedback for open response mathematical questions. In: Proceedings of the ACM Conference on Learning at Scale, pp. 167–176 (2015)
Lindsey, R., Shroyer, J., Pashler, H., Mozer, M.: Improving students’ long-term knowledge retention through personalized review. Psychol. Sci. 25(3), 639–647 (2014)
Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2), 129–137 (1982)
Ostini, R., Nering, M.L.: Polytomous Item Response Theory Models, No. 144, Sage (2006)
Pandey, S., Karypis, G.: A self attentive model for knowledge tracing. In: Proceedings of the International Conference on Educational Data Mining, pp. 384–389, July 2019
Pandey, S., Srivastava, J.: RKT: relation-aware self-attention for knowledge tracing. arXiv preprint arXiv:2008.12736 (2020)
Pardos, Z.A., Heffernan, N.T.: Modeling individualization in a Bayesian networks implementation of knowledge tracing. In: De Bra, P., Kobsa, A., Chin, D. (eds.) UMAP 2010. LNCS, vol. 6075, pp. 255–266. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13470-8_24
Pavlik Jr., P., Cen, H., Koedinger, K.: Performance factors analysis-a new alternative to knowledge tracing. In: Proceedings of the International Conference on Artificial Intelligence in Education (2009)
Piech, C., et al.: Deep knowledge tracing. In: Proceedings of the Conference on Advances in Neural Information Processing Systems, pp. 505–513 (2015)
Ritter, S., Anderson, J.R., Koedinger, K.R., Corbett, A.: Cognitive tutor: applied research in mathematics education. Psychon. Bull. Rev. 14(2), 249–255 (2007). https://doi.org/10.3758/BF03194060
Selent, D.A.: Creating systems and applying large-scale methods to improve student remediation in online tutoring systems in real-time and at scale. Ph.D. thesis, Worcester Polytechnic Institute (2017)
Smith III, J.P., DiSessa, A.A., Roschelle, J.: Misconceptions reconceived: a constructivist analysis of knowledge in transition. J. Learn. Sci. 3(2), 115–163 (1994)
Steinley, D.: Properties of the Hubert-arable adjusted rand index. Psychol. Methods 9(3), 386 (2004)
Thissen, D., Steinberg, L.: A taxonomy of item response models. Psychometrika 51(4), 567–577 (1986)
VanLehn, K.: Bugs are not enough: empirical studies of bugs, impasses and repairs in procedural skills. J. Math. Behav. (1982)
Wang, F., et al.: Neural cognitive diagnosis for intelligent education systems. Pro. AAAI Conf. Artif. Intell. 34, 6153–6161 (2020)
Wang, Z., et al.: Diagnostic questions: the NeurIPS 2020 education challenge. arXiv preprint arXiv:2007.12061 (2020)
Woolf, B.P.: Building Intelligent Interactive Tutors: Student-Centered Strategies for Revolutionizing E-learning. Morgan Kaufmann (2010)
Yang, Y., et al.: GIKT: a graph-based interaction model for knowledge tracing. In: Hutter, F., Kersting, K., Lijffijt, J., Valera, I. (eds.) ECML PKDD 2020. LNCS (LNAI), vol. 12457, pp. 299–315. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-67658-2_18
Yudelson, M.V., Koedinger, K.R., Gordon, G.J.: Individualized Bayesian knowledge tracing models. In: Lane, H.C., Yacef, K., Mostow, J., Pavlik, P. (eds.) AIED 2013. LNCS (LNAI), vol. 7926, pp. 171–180. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39112-5_18
Zhang, J., Shi, X., King, I., Yeung, D.Y.: Dynamic key-value memory networks for knowledge tracing. In: Proceedings of the International Conference on World Wide Web, pp. 765–774, April 2017
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Ghosh, A., Raspat, J., Lan, A. (2021). Option Tracing: Beyond Correctness Analysis in Knowledge Tracing. In: Roll, I., McNamara, D., Sosnovsky, S., Luckin, R., Dimitrova, V. (eds) Artificial Intelligence in Education. AIED 2021. Lecture Notes in Computer Science(), vol 12748. Springer, Cham. https://doi.org/10.1007/978-3-030-78292-4_12
Download citation
DOI: https://doi.org/10.1007/978-3-030-78292-4_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-78291-7
Online ISBN: 978-3-030-78292-4
eBook Packages: Computer ScienceComputer Science (R0)