Skip to main content

Requirement Analysis for Personal Autonomous Driving Robotic Systems in Urban Mobility

  • Conference paper
  • First Online:
HCI in Mobility, Transport, and Automotive Systems (HCII 2021)

Abstract

Urban mobility is changing due to the emergence of new technologies like autonomously navigating robots. In the future, various transport operators and micro mobility services will be integrated in an increasingly complex mobility system, potentially realizing benefits such as a reduction of congestion, travel costs, and emissions. The field of personal robotic transport agents is projected to increasingly play a role in urban mobility, hence in this study, prospective target groups and corresponding user needs concerning human-following robots for smart urban mobility applications are investigated. Building on an extensive literature review, three focus groups with a total of 19 participants are conducted, utilizing scenario-based design and personas. Results show clearly definable user needs and potential technological requirements for mobile robots deployed in urban road environments. The two most mentioned potential applications were found in the fields of leisure applications and in healthcare for elderly people. Based on these focus group results, two personal automated driving robots which differ in function, operation and interaction were designed. The focus group-based results and derived requirements shed light on the importance of context-sensitivity of robot design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Islam, M.J., Hong, J., Sattar, J.: Person-following by autonomous robots: a categorical overview. Int. J. Robot. Res. 38(14), 1581–1618 (2019). https://doi.org/10.1177/0278364919881683

    Article  Google Scholar 

  2. Siebert, F.W., Pickl, J., Klein, J., Rötting, M., Roesler, E.: Let’s not get too personal – distance regulation for follow me robots. In: Stephanidis, C., Antona, M., Ntoa, S. (eds.) HCII 2020. CCIS, vol. 1293, pp. 459–467. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60700-5_58

    Chapter  Google Scholar 

  3. Honig, S.S., Oron-Gilad, T., Zaichyk, H., Sarne-Fleischmann, V., Olatunji, S., Edan, Y.: Toward socially aware person-following robots. IEEE Trans. Cogn. Dev. Syst. 10(4), 936–954 (2018). https://doi.org/10.1109/TCDS.2018.2825641

    Article  Google Scholar 

  4. Decker, M., Fischer, M., Ott, I.: Service robotics and human labor: a first technology assessment of substitution and cooperation. Robot. Auton. Syst. 87, 348–354 (2017). https://doi.org/10.1016/j.robot.2016.09.017

    Article  Google Scholar 

  5. Frank, B., Schvaneveldt, S. J.: Quality attributes of robotic vehicles and their market potential. In: 2017 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM), pp. 750–754. IEEE (2017). https://doi.org/10.1109/IEEM.2017.8289991

  6. Onnasch, L., Roesler, E.: A taxonomy to structure and analyze human–robot interaction. Int. J. Social Robot. (2020). https://doi.org/10.1007/s12369-020-00666-5

  7. Siebert, F.W., Klein, J., Rötting, M., Roesler, E.: The influence of distance and lateral offset of follow me robots on user perception. Front. Robot. AI 7(74) (2020). https://doi.org/10.3389/frobt.2020.00074

  8. Olatunji, S., et al.: User Preferences for socially acceptable person-following robots. In: 2018: Assistance and Service Robotics in a Human Environment: From Personal Mobility Aids to Rehabilitation-Oriented Robotics. A workshop in conjunction with the 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (2018)

    Google Scholar 

  9. SAE J3016: Taxonomy and definitions for terms related to on-road motor vehicle automated driving systems (2018). https://doi.org/10.4271/J3016_201401

  10. Wahlster, W.: Künstliche Intelligenz als Grundlage autonomer Systeme. Informatik-Spektrum 40(5), 409–418 (2017). https://doi.org/10.1007/s00287-017-1049-y

    Article  Google Scholar 

  11. Olaverri Monreal, C.: Autonomous vehicles and smart mobility related technologies. Infocommunications J. 8(2), 17–24 (2016)

    Google Scholar 

  12. Hertzberg, J., Lingemann, K., Nüchter, A.: Mobile Roboter. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-01726-1

    Book  Google Scholar 

  13. VDI 2860: Assembly and handling; handling functions, handling units; terminology, definitions and symbols. Technical norm. Beuth Verlag GmbH (1990). https://www.vdi.de/richtlinien/details/vdi-2860-montage-undhandhabungstechnik-handhabungsfunktionen-handhabungseinrichtungen-begriffe-definitionen-symbole, Accessed 19 Feb 2020

  14. Kim, M., e al.: An architecture for person-following using active target search. Robotics, 1–7 (2018)

    Google Scholar 

  15. Pradeep, B.V., Rahul, E.S., Bhavani, R. .: Follow me robot using bluetooth-based position estimation. In: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI), pp. 584–589. IEEE (2017). https://doi.org/10.1109/ICACCI.2017.8125903

  16. Tomoya, A., Nakayama, S., Hoshina, A., Sugaya, M.: A mobile robot for following, watching and detecting falls for elderly care. Procedia Comput. Sci. 112, 1994–2003 (2017). https://doi.org/10.1016/j.procs.2017.08.125

    Article  Google Scholar 

  17. Hanson, S., Kaul, A.: Executive summary consumer robotics. (2019). https://tractica.omdia.com/research/consumer-robotics/, Accessed 12 March 2020

  18. Bundesamt für Justiz: Straßenverkehrs-Zulassungs-Ordnung (StVZO) (2012). https://www.gesetze-im-internet.de/stvzo_2012/BJNR067910012.html, Accessed 03 March 03 2020

  19. Brandt, C., Böker, B., Bullinger, A., Conrads, M., Duisberg, A., Stahl-Rolf, S.: Fallstudie: Delivery Robot Hamburg für KEP Zustellung (2019). https://www.bmwi.de/Redaktion/DE/Downloads/C-D/delivery-robot-hamburg.pdf?__blob=publicationFile&v=4, Accessed 21 May 2020

  20. Bundesministerium für Verkehr und digitale Infrastruktur: Elektrokleinstfahrzeuge – Fragen und Antworten (2020). https://www.bmvi.de/SharedDocs/DE/Artikel/StV/Strassenverkehr/elektrokleinstfahrzeuge-verordnung-faq.html, Accessed 21 May 2020

  21. Deutscher Bundestag: Autonomes und automatisiertes Fahren auf der Straße – rechtlicher Rahmen (2018). https://www.bundestag.de/resource/blob/562790/c12af1873384bcd1f8604334f97ee4b9/wd-7-111-18-pdf-data.pdf, Accessed 16 March 2020

  22. Cosgun, A., Florencio, D.A., Christensen, H.I.: Autonomous person following for telepresence robots. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 4335–4342. IEEE (2013). https://doi.org/10.1109/ICRA.2013.6631191

  23. Sonoura, T., Yoshimi, T., Nishiyama, M., Nakamoto, H., Tokura, S., Matsuhir, N.: Person following robot with vision-based and sensor fusion tracking algorithm. In Zhihui, X. (ed.) Computer Vision, pp. 519–538. InTech (2008). https://doi.org/10.5772/6161

  24. Gross, H.-M., et al.: Mobile robotic rehabilitation assistant for walking and orientation training of stroke patients: a report on work in progress. In: 2014 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 1880–1887. IEEE (2014). https://doi.org/10.1109/SMC.2014.6974195

  25. Tani, A., Endo, G., Fukushima, E.F., Hirose, S., Iribe, M., Takubo, T.: Study on a practical robotic follower to support home oxygen therapy patients-development and control of a mobile platform. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2423–2429. IEEE (2011). https://doi.org/10.1109/IROS.2011.6094633

  26. Itadera, S., Watanabe, T., Hasegawa, Y., Fukiida, T., Tanimoto, M., Kondo, I.: Coordinated movement algorithm for accompanying cane robot. In: 2016 International Symposium on Micro-Nano-Mechatronics and Human Science (MHS), pp. 1–3. IEEE (2016). https://doi.org/10.1109/MHS.2016.7824241

  27. Piaggio Fast Forward: Meet gita (2020). https://mygita.com/, Accessed 10 Feb 2020

  28. Ferreira, B.Q., Karipidou, K., Rosa, F., Petisca, S., Alves-Oliveira, P., Paiva, A.: A study on trust in a robotic suitcase. In: Agah, A., Cabibihan, J.-J., Howard, A.M., Salichs, M.A., He, H. (eds.) ICSR 2016. LNCS (LNAI), vol. 9979, pp. 179–189. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-47437-3_18

    Chapter  Google Scholar 

  29. smartbe Intelligent Stroller. New revolutionary concept. https://www.weinvent.global/smartbe, Accessed 2 Mar 2020

  30. Jung, E.-J., Lee, J.H., Yi, B.-J., Park, J., Yuta, S., Noh, S.-T.: Development of a laser-range-finder-based human tracking and control algorithm for a marathoner service robot. IEEE/ASME Trans. Mechatron. 19(6), 1963–1976 (2014). https://doi.org/10.1109/TMECH.2013.2294180

    Article  Google Scholar 

  31. Caddy Trek: The most compact and lightweight remote control golf card in the world (2020). https://www.caddytrek.com/, Accessed 3 Mar 2020

  32. Hancock, P.A., Pepe, A.A., Murphy, L.L.: Hedonomics: the power of positive and pleasurable ergonomics. Ergon. Des. Q. Hum. Factors Appl. 13(1), 8–14 (2005). https://doi.org/10.1177/106480460501300104

    Article  Google Scholar 

  33. Raibert, M., Blankespoor, K., Nelson, G., Playter, R.: BigDog, the rough-terrain quadruped robot. IFAC Proc. 41(2), 10822–10825 (2008). https://doi.org/10.3182/20080706-5-KR-1001.01833

    Article  Google Scholar 

  34. Dautzenberg, P., Köhler, A.L., Reske, M., Depner, N., Ladwig, S.: Less urban private transport through intelligent, micro-mobile transport solutions? a user-centered investigation of relevant use cases and requirements. In: Conference: 13th ITS European Congress (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kathrin Bärnklau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bärnklau, K., Rötting, M., Roesler, E., Siebert, F.W. (2021). Requirement Analysis for Personal Autonomous Driving Robotic Systems in Urban Mobility. In: Krömker, H. (eds) HCI in Mobility, Transport, and Automotive Systems. HCII 2021. Lecture Notes in Computer Science(), vol 12791. Springer, Cham. https://doi.org/10.1007/978-3-030-78358-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78358-7_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78357-0

  • Online ISBN: 978-3-030-78358-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics