Skip to main content

Privacy-Preserving Data Aggregation with Probabilistic Range Validation

  • Conference paper
  • First Online:
Applied Cryptography and Network Security (ACNS 2021)

Abstract

Privacy-preserving data aggregation protocols have been researched widely, but usually cannot guarantee correctness of the aggregate if users are malicious. These protocols can be extended with zero-knowledge proofs and commitments to work in the malicious model, but this incurs a significant computational cost on the end users, making adoption of these protocols less likely.

We propose a privacy-preserving data aggregation protocol for calculating the sum of user inputs. Our protocol gives the aggregator confidence that all inputs are within a desired range. Instead of zero-knowledge proofs, our protocol relies on a probabilistic hypergraph-based detection algorithm with which the aggregator can quickly pinpoint malicious users. Furthermore, our protocol is robust to user dropouts and, apart from the setup phase, it is non-interactive.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine learning. In: Proceedings of the ACM Conference on Computer and Communications Security, New York, New York, USA, pp. 1175–1191. ACM Press (2017). ISBN 9781450349468. https://doi.org/10.1145/3133956.3133982

  2. Burke, J., et al.: Participatory sensing. In: The 4th ACM Conference on Embedded Networked Sensor Systems, p. 5 (2006). https://escholarship.org/uc/item/19h777qd

  3. Fanti, G., Pihur, V., Erlingsson,Ú.: Building a RAPPOR with the unknown: privacy-preserving learning of associations and data dictionaries. Proc. Priv. Enhancing Technol. 2016(3), 41–61 (2016). ISSN 2299–0984. https://doi.org/10.1515/popets-2016-0015

  4. Bittau, A., et al.: PROCHLO: strong privacy for analytics in the crowd. In: SOSP 2017 - Proceedings of the 26th ACM Symposium on Operating Systems Principles, New York, New York, USA, pp. 441–459. ACM Press (2017). ISBN 9781450350853. https://doi.org/10.1145/3132747.3132769

  5. LeMay, M., Gross, G., Gunter, C.A., Garg, S.: Unified architecture for large-scale attested metering. In: Proceedings of the Annual Hawaii International Conference on System Sciences, pp. 1–10 (2007). ISSN 15301605. https://doi.org/10.1109/HICSS.2007.586

  6. Garcia, F.D., Jacobs, B.: Privacy-friendly energy-metering via homomorphic encryption. In: Cuellar, J., Lopez, J., Barthe, G., Pretschner, A. (eds.) STM 2010. LNCS, vol. 6710, pp. 226–238. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22444-7_15

    Chapter  Google Scholar 

  7. Christin, D.: Privacy in mobile participatory sensing: current trends and future challenges. J. Syst. Software 116, 57–68 (2016). ISSN 01641212. https://doi.org/10.1016/j.jss.2015.03.067

  8. Erkin, Z., Tsudik, G.: Private computation of spatial and temporal power consumption with smart meters. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 561–577. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31284-7_33

    Chapter  Google Scholar 

  9. Kursawe, K.: Some Ideas on Privacy Preserving Meter Aggregation. Radboud Universiteit Nijmegen, Technical report, ICIS-R11002, pp. 1–15 (2010)

    Google Scholar 

  10. Erkin, Z.: Private data aggregation with groups for smart grids in a dynamic setting using CRT. In: 2015 IEEE International Workshop on Information Forensics and Security, WIFS 2015 - Proceedings, vol. 30, pp. 1–6. IEEE, 11 2015. ISBN 9781467368025. https://doi.org/10.1109/WIFS.2015.7368584

  11. Rastogi, V., Nath, S.: Differentially private aggregation of distributed time-series with transformation and encryption. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, New York, New York, USA, pp. 735–746. ACM Press (2010). ISBN 9781450300322. https://doi.org/10.1145/1807167.1807247

  12. Ács, G., Castelluccia, C.: I Have a DREAM! (DiffeRentially privatE smArt Metering). In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 118–132. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24178-9_9

    Chapter  Google Scholar 

  13. Shi, E., Hubert Chan, T.-H., Rieffel, E., Chow, R., Song, D.: Privacy-preserving aggregation of time-series data. In: Annual Network & Distributed System Security Symposium (NDSS) (2011)

    Google Scholar 

  14. Kursawe, K., Danezis, G., Kohlweiss, M.: Privacy-friendly aggregation for the smart-grid. In: Fischer-Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 175–191. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22263-4_10

    Chapter  Google Scholar 

  15. Yang, L., Li, F.: Detecting false data injection in smart grid in-network aggregation. In: 2013 IEEE International Conference on Smart Grid Communications, SmartGridComm 2013, pp. 408–413. IEEE, October 2013. ISBN 9781479915262. https://doi.org/10.1109/SmartGridComm.2013.6687992

  16. McLaughlin, S., Holbert, B., Fawaz, A., Berthier, R., Zonouz, S.: A multi-sensor energy theft detection framework for advanced metering infrastructures. IEEE J. Sel. Areas Commun. 31(7), 1319–1330 (2013). ISSN 07338716. https://doi.org/10.1109/JSAC.2013.130714

  17. Lie, D., Maniatis, P.: Glimmers: resolving the privacy/trust quagmire. In: Proceedings of the Workshop on Hot Topics in Operating Systems - HOTOS, volume Part F1293, New York, New York, USA, 2017, pp. 94–99. ACM Press. ISBN 9781450350686. https://doi.org/10.1145/3102980.3102996

  18. Boudot, F.: Efficient proofs that a committed number lies in an interval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_31

    Chapter  MATH  Google Scholar 

  19. Morais, E., Koens, T., van Wijk, C., Koren, A.: A survey on zero knowledge range proofs and applications. SN Appl. Sci. 1(8), 1–17 (2019). ISSN 2523–3963. https://doi.org/10.1007/s42452-019-0989-z

  20. Blum, A., Dwork, C., McSherry, F., Nissim, K.: Practical privacy: the SulQ framework. In: Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 128–138 (2005). https://doi.org/10.1145/1065167.1065184

  21. Sun, R., Shi, Z., Lu, R., Lu, M., Shen. , X.: APED: an efficient aggregation protocol with error detection for smart grid communications. In: GLOBECOM - IEEE Global Telecommunications Conference, pp. 432–437 (2013). https://doi.org/10.1109/GLOCOM.2013.6831109

  22. Shi, Z., Sun, R., Lu, R., Chen, L., Chen, J., Shen, X.S.: Diverse grouping-based aggregation protocol with error detection for smart grid communications. IEEE Trans. Smart Grid 6(6), 2856–2868 (2015). ISSN 19493053. https://doi.org/10.1109/TSG.2015.2443011

  23. Ahadipour, A., Mohammadi, M., Keshavarz-Haddad, A.: Statistical-based privacy-preserving scheme with malicious consumers identification for smart grid, pp. 1–9, April 2019

    Google Scholar 

  24. Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and post-quantum secure computational integrity. IACR Cryptol. ePrint Arch., 2018:46 (2018). URL https://eprint.iacr.org/2018/046.pdf

  25. Corrigan-Gibbs, H., Boneh, D.: Prio: private, robust, and scalable computation of aggregate statistics. In: Proceedings of the 14th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2017, pp. 259–282, March 2017. ISBN 9781931971379

    Google Scholar 

  26. Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short proofs for confidential transactions and more. In: Proceedings - IEEE Symposium on Security and Privacy, volume 2018-May, pp. 315–334. IEEE, May 2018. ISBN 9781538643525. https://doi.org/10.1109/SP.2018.00020

  27. Szymanski, T.: “Hypermeshes”: optical interconnection networks for parallel computing. J. Parall. Distrib. Comput. 26(1), 1–23 (1995). ISSN 07437315. https://doi.org/10.1006/jpdc.1995.1043

  28. Eisenberg, B.: On the expectation of the maximum of IID geometric random variables. Stat. Probabil. Lett. 78(2), 135–143 (2008). ISSN 01677152. https://doi.org/10.1016/j.spl.2007.05.011

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. W. Dekker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dekker, F.W., Erkin, Z. (2021). Privacy-Preserving Data Aggregation with Probabilistic Range Validation. In: Sako, K., Tippenhauer, N.O. (eds) Applied Cryptography and Network Security. ACNS 2021. Lecture Notes in Computer Science(), vol 12727. Springer, Cham. https://doi.org/10.1007/978-3-030-78375-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78375-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78374-7

  • Online ISBN: 978-3-030-78375-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics