Abstract
Privacy-preserving data aggregation protocols have been researched widely, but usually cannot guarantee correctness of the aggregate if users are malicious. These protocols can be extended with zero-knowledge proofs and commitments to work in the malicious model, but this incurs a significant computational cost on the end users, making adoption of these protocols less likely.
We propose a privacy-preserving data aggregation protocol for calculating the sum of user inputs. Our protocol gives the aggregator confidence that all inputs are within a desired range. Instead of zero-knowledge proofs, our protocol relies on a probabilistic hypergraph-based detection algorithm with which the aggregator can quickly pinpoint malicious users. Furthermore, our protocol is robust to user dropouts and, apart from the setup phase, it is non-interactive.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bonawitz, K., et al.: Practical secure aggregation for privacy-preserving machine learning. In: Proceedings of the ACM Conference on Computer and Communications Security, New York, New York, USA, pp. 1175–1191. ACM Press (2017). ISBN 9781450349468. https://doi.org/10.1145/3133956.3133982
Burke, J., et al.: Participatory sensing. In: The 4th ACM Conference on Embedded Networked Sensor Systems, p. 5 (2006). https://escholarship.org/uc/item/19h777qd
Fanti, G., Pihur, V., Erlingsson,Ú.: Building a RAPPOR with the unknown: privacy-preserving learning of associations and data dictionaries. Proc. Priv. Enhancing Technol. 2016(3), 41–61 (2016). ISSN 2299–0984. https://doi.org/10.1515/popets-2016-0015
Bittau, A., et al.: PROCHLO: strong privacy for analytics in the crowd. In: SOSP 2017 - Proceedings of the 26th ACM Symposium on Operating Systems Principles, New York, New York, USA, pp. 441–459. ACM Press (2017). ISBN 9781450350853. https://doi.org/10.1145/3132747.3132769
LeMay, M., Gross, G., Gunter, C.A., Garg, S.: Unified architecture for large-scale attested metering. In: Proceedings of the Annual Hawaii International Conference on System Sciences, pp. 1–10 (2007). ISSN 15301605. https://doi.org/10.1109/HICSS.2007.586
Garcia, F.D., Jacobs, B.: Privacy-friendly energy-metering via homomorphic encryption. In: Cuellar, J., Lopez, J., Barthe, G., Pretschner, A. (eds.) STM 2010. LNCS, vol. 6710, pp. 226–238. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22444-7_15
Christin, D.: Privacy in mobile participatory sensing: current trends and future challenges. J. Syst. Software 116, 57–68 (2016). ISSN 01641212. https://doi.org/10.1016/j.jss.2015.03.067
Erkin, Z., Tsudik, G.: Private computation of spatial and temporal power consumption with smart meters. In: Bao, F., Samarati, P., Zhou, J. (eds.) ACNS 2012. LNCS, vol. 7341, pp. 561–577. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31284-7_33
Kursawe, K.: Some Ideas on Privacy Preserving Meter Aggregation. Radboud Universiteit Nijmegen, Technical report, ICIS-R11002, pp. 1–15 (2010)
Erkin, Z.: Private data aggregation with groups for smart grids in a dynamic setting using CRT. In: 2015 IEEE International Workshop on Information Forensics and Security, WIFS 2015 - Proceedings, vol. 30, pp. 1–6. IEEE, 11 2015. ISBN 9781467368025. https://doi.org/10.1109/WIFS.2015.7368584
Rastogi, V., Nath, S.: Differentially private aggregation of distributed time-series with transformation and encryption. In: Proceedings of the ACM SIGMOD International Conference on Management of Data, New York, New York, USA, pp. 735–746. ACM Press (2010). ISBN 9781450300322. https://doi.org/10.1145/1807167.1807247
Ács, G., Castelluccia, C.: I Have a DREAM! (DiffeRentially privatE smArt Metering). In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 118–132. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24178-9_9
Shi, E., Hubert Chan, T.-H., Rieffel, E., Chow, R., Song, D.: Privacy-preserving aggregation of time-series data. In: Annual Network & Distributed System Security Symposium (NDSS) (2011)
Kursawe, K., Danezis, G., Kohlweiss, M.: Privacy-friendly aggregation for the smart-grid. In: Fischer-Hübner, S., Hopper, N. (eds.) PETS 2011. LNCS, vol. 6794, pp. 175–191. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22263-4_10
Yang, L., Li, F.: Detecting false data injection in smart grid in-network aggregation. In: 2013 IEEE International Conference on Smart Grid Communications, SmartGridComm 2013, pp. 408–413. IEEE, October 2013. ISBN 9781479915262. https://doi.org/10.1109/SmartGridComm.2013.6687992
McLaughlin, S., Holbert, B., Fawaz, A., Berthier, R., Zonouz, S.: A multi-sensor energy theft detection framework for advanced metering infrastructures. IEEE J. Sel. Areas Commun. 31(7), 1319–1330 (2013). ISSN 07338716. https://doi.org/10.1109/JSAC.2013.130714
Lie, D., Maniatis, P.: Glimmers: resolving the privacy/trust quagmire. In: Proceedings of the Workshop on Hot Topics in Operating Systems - HOTOS, volume Part F1293, New York, New York, USA, 2017, pp. 94–99. ACM Press. ISBN 9781450350686. https://doi.org/10.1145/3102980.3102996
Boudot, F.: Efficient proofs that a committed number lies in an interval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45539-6_31
Morais, E., Koens, T., van Wijk, C., Koren, A.: A survey on zero knowledge range proofs and applications. SN Appl. Sci. 1(8), 1–17 (2019). ISSN 2523–3963. https://doi.org/10.1007/s42452-019-0989-z
Blum, A., Dwork, C., McSherry, F., Nissim, K.: Practical privacy: the SulQ framework. In: Proceedings of the ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems, pp. 128–138 (2005). https://doi.org/10.1145/1065167.1065184
Sun, R., Shi, Z., Lu, R., Lu, M., Shen. , X.: APED: an efficient aggregation protocol with error detection for smart grid communications. In: GLOBECOM - IEEE Global Telecommunications Conference, pp. 432–437 (2013). https://doi.org/10.1109/GLOCOM.2013.6831109
Shi, Z., Sun, R., Lu, R., Chen, L., Chen, J., Shen, X.S.: Diverse grouping-based aggregation protocol with error detection for smart grid communications. IEEE Trans. Smart Grid 6(6), 2856–2868 (2015). ISSN 19493053. https://doi.org/10.1109/TSG.2015.2443011
Ahadipour, A., Mohammadi, M., Keshavarz-Haddad, A.: Statistical-based privacy-preserving scheme with malicious consumers identification for smart grid, pp. 1–9, April 2019
Ben-Sasson, E., Bentov, I., Horesh, Y., Riabzev, M.: Scalable, transparent, and post-quantum secure computational integrity. IACR Cryptol. ePrint Arch., 2018:46 (2018). URL https://eprint.iacr.org/2018/046.pdf
Corrigan-Gibbs, H., Boneh, D.: Prio: private, robust, and scalable computation of aggregate statistics. In: Proceedings of the 14th USENIX Symposium on Networked Systems Design and Implementation, NSDI 2017, pp. 259–282, March 2017. ISBN 9781931971379
Bünz, B., Bootle, J., Boneh, D., Poelstra, A., Wuille, P., Maxwell, G.: Bulletproofs: short proofs for confidential transactions and more. In: Proceedings - IEEE Symposium on Security and Privacy, volume 2018-May, pp. 315–334. IEEE, May 2018. ISBN 9781538643525. https://doi.org/10.1109/SP.2018.00020
Szymanski, T.: “Hypermeshes”: optical interconnection networks for parallel computing. J. Parall. Distrib. Comput. 26(1), 1–23 (1995). ISSN 07437315. https://doi.org/10.1006/jpdc.1995.1043
Eisenberg, B.: On the expectation of the maximum of IID geometric random variables. Stat. Probabil. Lett. 78(2), 135–143 (2008). ISSN 01677152. https://doi.org/10.1016/j.spl.2007.05.011
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2021 Springer Nature Switzerland AG
About this paper
Cite this paper
Dekker, F.W., Erkin, Z. (2021). Privacy-Preserving Data Aggregation with Probabilistic Range Validation. In: Sako, K., Tippenhauer, N.O. (eds) Applied Cryptography and Network Security. ACNS 2021. Lecture Notes in Computer Science(), vol 12727. Springer, Cham. https://doi.org/10.1007/978-3-030-78375-4_4
Download citation
DOI: https://doi.org/10.1007/978-3-030-78375-4_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-030-78374-7
Online ISBN: 978-3-030-78375-4
eBook Packages: Computer ScienceComputer Science (R0)