Skip to main content

Guaranteeing Information Integrity Through Blockchains for Smart Cities

  • Conference paper
  • First Online:
Model and Data Engineering (MEDI 2021)

Abstract

Given the threats that the smart city faces especially tampering the integrity of information, it has become necessary to integrate more robust and decentralized technologies that ensure transparency and sustainability of the system. Blockchain is a technology initially directed to limit the manipulation in financial transactions. One of the most popular currencies adopting this technology is Bitcoin, the latter has been very successful due to the high protection it provides. In this work, we integrate blockchain technology to become the mainstay for protecting all types of information that is collected by smart devices within a smart city. We give the blockchain structure and its internal components, and accordingly we propose an architecture for the IoT system that is compatible with the constrained devices. We explain the steps of communications between nodes, highlight the limitations, and propose solutions to them. Then, we conclude the work with experiments to show the effectiveness and the validity of the proposed architecture. The obtained results were more satisfactory, which encourage us to apply it in reality.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Background to “Assessing Russian Activities and Intentions in Recent US Elections”: The Analytic Process and Cyber Incident Attribution, 6 January 2017. https://digital.library.unt.edu/ark:/67531/metadc94926

  2. Allcott, H.: Gentzkow, Matthew: Social media and fake news in the 2016 election. J. Econ. Perspect. 31(2), 211–236 (2017)

    Article  Google Scholar 

  3. Lewandowsky, S., Ecker, U.K.H., Seifert, C.M., Schwarz, N., Cook, J.: Misinformation and its correction: continued influence and successful debiasing. Psychol. Sci. Public Interest 13(3), 106–131 (2012)

    Article  Google Scholar 

  4. Fuchs, M.H., Kenney, C., Perina, A., VanDoorn, F.: Why Americans should care about Russian hacking; center for American progress: Washington. DC, USA (2017)

    Google Scholar 

  5. Prabadevi, B., Jeyanthi, N.: A review on various sniffing attacks and its mitigation techniques. Indonesian J. Electr. Eng. Comput. Sci. 12, 1117–1125 (2018)

    Article  Google Scholar 

  6. Lesavre, L., Varin, P., Mell, P., Davidson, M., Shook, J.: A Taxonomic Approach to Understanding Emerging Blockchain Identity Management Systems (2019)

    Google Scholar 

  7. Angraal, S., Krumholz, H., Schulz, W.: Blockchain Technology: Applications in Health Care. Circulation: Cardiovascular Quality and Outcomes 10, e003800 (2017). doi: 10.1161/CIRCOUTCOMES.117.003800

    Google Scholar 

  8. Treleaven, P., Gendal Brown, R., Yang, D.: Blockchain Technology in Financ. Computer 50(9), 14–17 (2017). https://doi.org/10.1109/MC.2017.3571047

    Article  Google Scholar 

  9. Sun, H., Wang, X., Wang, X.: Application of blockchain technology in online education. Int. J. Emerging Technol. Learn. (iJET) 13(10), 252–259 (2018)

    Article  Google Scholar 

  10. Raikwar, M., Mazumdar, S., Ruj, S., Sen Gupta, S., Chattopadhyay, A., Lam, K.: A blockchain framework for insurance processes. In: 2018 9th IFIP International Conference on New Technologies, Mobility and Security (NTMS), pp. 1–4 (2018)

    Google Scholar 

  11. Liu, B., Yu, X.L., Chen, S., Xu, X., Zhu, L.: Blockchain based data integrity service framework for IoT data. In: 2017 IEEE International Conference on Web Services (ICWS), Honolulu, HI, pp. 468–475 (2017)

    Google Scholar 

  12. Li, M., et al.: CrowdBC: a blockchain-based decentralized framework for crowdsourcing. IEEE Trans. Parallel Distrib. Syst. 30(6), 1251–1266 (2019)

    Article  Google Scholar 

  13. Cebe, M., Erdin, E., Akkaya, K., Aksu, H., Uluagac, S.: Block4Forensic: an integrated lightweight blockchain framework for forensics applications of connected vehicles. IEEE Comm. Mag. 56(10), 50–57 (2018)

    Article  Google Scholar 

  14. Kushch, S., Prieto-Castrillo, F.: Blockchain for dynamic nodesin a smart city. In: 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), April 2019

    Google Scholar 

  15. Jia, B., Zhou, T., Li, W., Liu, Z., Zhang, J.: A blockchain-based location privacy protection incentive mechanism in crowd sensing networks. Sensors 18, 3894 (2018)

    Article  Google Scholar 

  16. Novo, O.: Blockchain Meets IoT: An Architecture for Scalable Access Management in IoT. 5, 1184–1195 (2018). https://doi.org/10.1109/JIOT.2018.2812239

    Article  Google Scholar 

  17. Nagothu, D., Xu, R., Nikouei, S.Y., Chen, Y.: A microservice-enabled architecture for smart surveillance using blockchain technology. In: IEEE International Smart Cities Conference (ISC2), Kansas City, MO, USA 2018, pp. 1–4 (2018)

    Google Scholar 

  18. Maetouq, A.: Comparison of hash function algorithms against attacks: a review. Inte. J. Adv. Comput. Sci. Appl. (IJACSA) 9(8) (2018)

    Google Scholar 

  19. Ouchani, S.: Ensuring the functional correctness of IoT through formal modeling and verification. In: MEDI, pp. 401–417 (2018)

    Google Scholar 

  20. Ouchani, S., Aït Mohamed, O.: A formal verification framework for Bluespec System Verilog. FDL, Mourad Debbabi, pp. 1–7 (2013)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samir Ouchani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dahmane, W.M., Ouchani, S., Bouarfa, H. (2021). Guaranteeing Information Integrity Through Blockchains for Smart Cities. In: Attiogbé, C., Ben Yahia, S. (eds) Model and Data Engineering. MEDI 2021. Lecture Notes in Computer Science(), vol 12732. Springer, Cham. https://doi.org/10.1007/978-3-030-78428-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78428-7_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78427-0

  • Online ISBN: 978-3-030-78428-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics