Skip to main content

K-Nearest Neighbors Classification of Semantic Web Ontologies

  • Conference paper
  • First Online:
Model and Data Engineering (MEDI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12732))

Included in the following conference series:

Abstract

The growing interest in the semantic web technologies in the past years has led to the increase in the number of ontologies on the web. This gives semantic web developers the opportunity to select and reuse these ontologies in new applications. However, none of the existing approaches has leveraged the power of Machine Learning to assist in the choice of suitable ontologies for reuse. In this paper, the k-Nearest Neighbors (KNN) algorithm is implemented to classify ontologies based on their quality metrics. The aim is to group the ontologies that display the same quality properties into classes, thereby, providing some insights into the selection and reuse of these ontologies using a Machine Learning technique. The experiments were carried out with a dataset of 200 biomedical ontologies characterized each by 11 quality metric attributes. The KNN model was trained and tested with 70% and 30% of the dataset, respectively. The evaluation of the KNN model was undertaken with various metrics including accuracy, precision, recall, F-measure and Receiver Operating Characteristic (ROC) curves. For the best value of k = 5 the KNN model displayed promising results with an accuracy of 67% and the average precision, recall, and F-measure of 69%, 67%, and 67%, respectively as well as an area under ROC curve of 0.78.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Trokanas, N., Cecelja, F.: Ontology evaluation for reuse in the domain of process systems engineering. Comput. Chem. Eng. 85, 177–187 (2016)

    Google Scholar 

  2. Alani, H., Brewster, C., Shadbolt, N.: Ranking ontologies with AKTiveRank. In: 5th International Conference on the Semantic Web, pp. 1–15. Athens, Greece (2006)

    Google Scholar 

  3. dAquin, M., Noy, N.F.: Where to publish and find ontologies? A survey of ontology libraries. Web Semant. Sci. Serv. Agents World Wide Web 11, 96–111 (2012)

    Google Scholar 

  4. Lantow, B.: OntoMetrics: putting metrics into use for ontology evaluation. In: Proceedings of the 8th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2016), pp. 186–191, Joaquim Filipe, Portugal (2016)

    Google Scholar 

  5. Wolstencroft, K., Lord, P., Tabernero, L., Brass, A., Stevens, R.: Protein classification using ontology classification. Bioinformatics 22, e530–e538 (2006)

    Article  Google Scholar 

  6. Glimm, B., Horrocks, I., Motik, B., Shearer, R., Stoilos, G.: A novel approach to ontology classification. J. Seman. Web 14, 84–101 (2012)

    Google Scholar 

  7. Wang, C., Feng, Z., Zhang, X., Wang, X., Rao, G., Fu, D.: ComR: a combined OWL reasoner for ontology classification. Front. Comput. Sci. 13, 139–156 (2019)

    Article  Google Scholar 

  8. Zhao, Y., Dong, J., Peng, T.: Ontology classification for semantic-web-based software engineering. IEEE Trans. Serv. Comput. 2, 303–317 (2009)

    Article  Google Scholar 

  9. Jurisch, M., Igler, B.: RDF2Vec-based classification of ontology alignment changes. In: 1st Workshop on Deep Learning for Knowledge Graphs and Semantic Technologies (DL4KGS) co-located with the 15th Extended Semantic Web Conerence (ESWC 2018) (2018)

    Google Scholar 

  10. Fan, G.F., Guo, Y.H., Zheng, J.M., Hong, W.C.: Application of the weighted K-nearest neighbor algorithm for short-term load forecasting. Energies 12, 1–19 (2019)

    Google Scholar 

  11. Jabbar, M.A., Deekshatulu, B.L., Chandra, P.: Classification of heart disease using K-nearest neighbor and genetic algorithm. Procedia Technol. 10, 85–94 (2013)

    Google Scholar 

  12. Luschow, A., Wartena, C.: Classifying medical literature using k-nearest-neighbours algorithm. In: NKOS Workshop, pp. 1–13 (2017)

    Google Scholar 

  13. Sharman, R., Rao, H.R., Raghu, T.S. (eds.): WEB 2009. LNBIP, vol. 52. Springer, Heidelberg. https://doi.org/10.1007/978-3-642-17449-0

  14. Harrison, O: Machine learning basics with the K-nearest neighbors algorithm. Towards Data Sci. (2018)

    Google Scholar 

  15. Denoeux, T.: A K-Nearest Neighbor Classification Rule Based on Dempster-Shafer Theory. International Journal on Transactions on Systems, Man and Cybernetics. 25, 804–813 (1995)

    Article  Google Scholar 

  16. Hand, D., Mannila, H., Smyth, P.: Principles of Data mining, pp. 242–267. The MIT Press, Cambridge (2001)

    Google Scholar 

  17. Zhang, M., Zhou, Z.: A k-nearest neighbor based algorithm for multi-label classification. In: IEEE International Conference on Granular Computing, pp. 718–721 (2005)

    Google Scholar 

  18. Potamias, M., Bonchi, F., Gionis, A., Kollios, G.: K-nearest neighbors in uncertain graphs. J. VLDB Endowment 3, 997–1008 (2010)

    Article  Google Scholar 

  19. Clare, A., King, R.D.: Knowledge discovery in multi-label phenotype data. In: De Raedt, L., Siebes, A. (eds.) PKDD 2001. LNCS (LNAI), vol. 2168, pp. 42–53. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44794-6_4

  20. Myles, J., Hand, D.: The multi-class metric problem in nearest neighbor discrimination rules. Int. J. Patt. Recogn. 23, 1291–1297 (1990)

    Google Scholar 

  21. Noy, N.F., et al.: BioPortal: ontologies and integrated data resources at the click of a mouse. In: International Conference on Biomedical Ontology, p. 197. New York, USA (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Vincent Fonou-Dombeu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Koech, G., Fonou-Dombeu, J.V. (2021). K-Nearest Neighbors Classification of Semantic Web Ontologies. In: Attiogbé, C., Ben Yahia, S. (eds) Model and Data Engineering. MEDI 2021. Lecture Notes in Computer Science(), vol 12732. Springer, Cham. https://doi.org/10.1007/978-3-030-78428-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78428-7_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78427-0

  • Online ISBN: 978-3-030-78428-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics