Skip to main content

Online Classification of Cognitive Control Processes Using EEG and fNIRS: A Stroop Experiment

  • Conference paper
  • First Online:
Human-Computer Interaction. Theory, Methods and Tools (HCII 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12762))

Included in the following conference series:

  • 3640 Accesses

Abstract

Introduction: Brain-computer interfaces (BCIs) provide a broad range of applications for human-computer interactions. Exploring cognitive control and underlying neurophysiological mechanisms brings essential contributions to this research field. In this paper, neurophysiological findings connected to cognitive control processes using the Stroop experiment were investigated. Electroencephalography (EEG) and functional infrared spectroscopy (fNIRS) were employed for measuring brain activities. The Stroop-test was classified against resting-state activities.

Materials and Methods: The wireless g.Nautilus fNIRS system (g.tec medical engineering GmbH) with 16 channels of EEG, combined with 8 channels of fNIRS, was used for data acquisition. Six healthy subjects participated in the conducted Stroop experiment.

Results: A considerable hemodynamic response was present during the Stroop-test, as seen in the offline analysis. The EEG-based classification delay was considerably lower than those with oxygenated and deoxygenated hemoglobin-based classifiers. The online experiment analysis showed that the accuracy rose clearly within the first 2 s of the task. On average, a maximum accuracy of 81.0% was achieved at 6.2 s after the task onset.

Discussion: and Conclusion: In general, the hybrid approach seems superior by facilitating information from all three modalities. In conclusion, the capability of successfully determining frontal lobe activity is a promising indication to use hybrid BCIs for further research applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wolpaw, J.R., Birbaumer, N., McFarland, D.J., et al.: Brain–computer interfaces for communication and control. Clin. Neurophysiol. 113, 767–791 (2002). https://doi.org/10.1016/S1388-2457(02)00057-3

    Article  Google Scholar 

  2. Wolpaw, J.R., Loeb, G.E., Allison, B.Z., et al.: BCI meeting 2005–workshop on signals and recording methods. IEEE Trans. Neural Syst. Rehabil. Eng. 14, 138–141 (2006). https://doi.org/10.1109/TNSRE.2006.875583

    Article  Google Scholar 

  3. Leuthardt, E.C., Schalk, G., Roland, J., et al.: Evolution of brain-computer interfaces: going beyond classic motor physiology. Neurosurg. Focus 27, E4 (2009). https://doi.org/10.3171/2009.4.FOCUS0979

    Article  Google Scholar 

  4. Lebedev, M.A., Nicolelis, M.A.L.: Brain–machine interfaces: past, present and future. Trends Neurosci. 29, 536–546 (2006). https://doi.org/10.1016/j.tins.2006.07.004

    Article  Google Scholar 

  5. Bandara, D.S.V., Kiguchi, K.: Brain signal acquisition methods in BCIs to estimate human motion intention – a survey. In: 2018 International Symposium on Micro-NanoMechatronics and Human Science (MHS), pp. 1–7. IEEE, Nagoya (2018). https://doi.org/10.1109/MHS.2018.8887072

  6. Hong, K.-S., Naseer, N., Kim, Y.-H.: Classification of prefrontal and motor cortex signals for three-class fNIRS–BCI. Neurosci. Lett. 6 (2015). https://doi.org/10.1016/j.neulet.2014.12.029

  7. Chiarelli, A.M., Croce, P., Merla, A., Zappasodi, F.: Deep learning for hybrid EEG-fNIRS brain-computer interface: application to motor imagery classification. J. Neural. Eng. 15, 036028 (2018). https://doi.org/10.1088/1741-2552/aaaf82

    Article  Google Scholar 

  8. Verma, P., Heilinger, A., Reitner, P., et al.: Performance investigation of brain-computer interfaces that combine EEG and fNIRS for motor imagery tasks. In: 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), pp. 259–263. IEEE, Bari (2019). https://doi.org/10.1109/SMC.2019.8914083

  9. Midha, S., Maior, H.A., Wilson, M.L., Sharples, S.: Measuring mental workload variations in office work tasks using fNIRS. Int. J. Hum. Comput. Stud. 147, 102580 (2021). https://doi.org/10.1016/j.ijhcs.2020.102580

    Article  Google Scholar 

  10. Cicalese, P.A., Li, R., Ahmadi, M.B., et al.: An EEG-fNIRS hybridization technique in the four-class classification of alzheimer’s disease. J. Neurosci. Methods 336, 108618 (2020). https://doi.org/10.1016/j.jneumeth.2020.108618

    Article  Google Scholar 

  11. Farina, F.R., Emek-Savaş, D.D., Rueda-Delgado, L., et al.: A comparison of resting state EEG and structural MRI for classifying Alzheimer’s disease and mild cognitive impairment. Neuroimage 215, 116795 (2020). https://doi.org/10.1016/j.neuroimage.2020.116795

    Article  Google Scholar 

  12. Todri, J., Lena, O., Martínez Gil, J.L.: A single blind randomized controlled trial of global postural re-education: cognitive effects on Alzheimer disease patients. Eur. J. Psychiatry 33, 83–90 (2019). https://doi.org/10.1016/j.ejpsy.2019.01.001

    Article  Google Scholar 

  13. Heidlmayr, K., Kihlstedt, M., Isel, F.: A review on the electroencephalography markers of stroop executive control processes. Brain Cogn. 146, 105637 (2020). https://doi.org/10.1016/j.bandc.2020.105637

    Article  Google Scholar 

  14. Tafuro, A., Ambrosini, E., Puccioni, O., Vallesi, A.: Brain oscillations in cognitive control: a cross-sectional study with a spatial stroop task. Neuropsychologia 133, 107190 (2019). https://doi.org/10.1016/j.neuropsychologia.2019.107190

    Article  Google Scholar 

  15. Pijnenborg, G.H.M., Larabi, D.I., Xu, P., et al.: Brain areas associated with clinical and cognitive insight in psychotic disorders: a systematic review and meta-analysis. Neurosci. Biobehav. Rev. 116, 301–336 (2020). https://doi.org/10.1016/j.neubiorev.2020.06.022

    Article  Google Scholar 

  16. Yeung, M.K., Lee, T.L., Chan, A.S.: Neurocognitive development of flanker and Stroop interference control: a near-infrared spectroscopy study. Brain Cogn. 143, 105585 (2020). https://doi.org/10.1016/j.bandc.2020.105585

    Article  Google Scholar 

  17. De, A., Konar, A., Samanta, A., et al.: An fNIRs study to classify stages of learning from visual stimuli using prefrontal hemodynamics. In: 2017 Third International Conference on Biosignals, Images and Instrumentation (ICBSII), pp. 1–7. IEEE, Chennai (2017). https://doi.org/10.1109/ICBSII.2017.8082272

  18. Hirsch, G., Dirodi, M., Xu, R., Reitner, P., Guger, C.: Online classification of motor imagery using EEG and fNIRS: a hybrid approach with real time human-computer interaction. In: Stephanidis, C., Antona, M. (eds.) HCII 2020. CCIS, vol. 1224, pp. 231–238. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50726-8_30

    Chapter  Google Scholar 

  19. Blankertz, B., Tomioka, R., Lemm, S., et al.: Optimizing spatial filters for robust EEG single-trial analysis. IEEE Signal Process. Mag. 25, 41–56 (2008). https://doi.org/10.1109/MSP.2008.4408441

    Article  Google Scholar 

  20. Geraedts, V.J., Marinus, J., Gouw, A.A., et al.: Quantitative EEG reflects non-dopaminergic disease severity in Parkinson’s disease. Clin. Neurophysiol. 8 (2018). https://doi.org/10.1016/j.clinph.2018.04.752

  21. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, New York (2006)

    MATH  Google Scholar 

  22. Müller-Putz, G., Scherer, R., Brunner, C., et al.: Better than random: a closer look on BCI results. Int. J. Bioelectromagn. 10, 52–55 (2008)

    Google Scholar 

  23. Schroeter, M.L., Zysset, S., Kupka, T., et al.: Near-infrared spectroscopy can detect brain activity during a color-word matching stroop task in an event-related design. Hum. Brain Mapp. 17, 61–71 (2002). https://doi.org/10.1002/hbm.10052

    Article  Google Scholar 

  24. Aghajani, H., Garbey, M., Omurtag, A.: Measuring mental workload with EEG+fNIRS. Front Hum. Neurosci. 11 (2017). https://doi.org/10.3389/fnhum.2017.00359

  25. Al-Shargie, F., Kiguchi, M., Badruddin, N., et al.: Mental stress assessment using simultaneous measurement of EEG and fNIRS. Biomed. Opt. Express 7, 3882 (2016). https://doi.org/10.1364/BOE.7.003882

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially funded via the European Commission project RHUMBO – H2020-MSCA-ITN-2018-813234.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leonhard Schreiner .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Schreiner, L., Hirsch, G., Xu, R., Reitner, P., Pretl, H., Guger, C. (2021). Online Classification of Cognitive Control Processes Using EEG and fNIRS: A Stroop Experiment. In: Kurosu, M. (eds) Human-Computer Interaction. Theory, Methods and Tools. HCII 2021. Lecture Notes in Computer Science(), vol 12762. Springer, Cham. https://doi.org/10.1007/978-3-030-78462-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78462-1_45

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78461-4

  • Online ISBN: 978-3-030-78462-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics