Skip to main content

Definition and Estimation of Dimension in Facial Expression Space

  • Conference paper
  • First Online:
Human-Computer Interaction. Theory, Methods and Tools (HCII 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12762))

Included in the following conference series:

  • 4383 Accesses

Abstract

It has recently been shown that the facial expression space as a psychophysical image space is a Riemann space where the metric tensor is defined by the JND (Just-Noticeable-Difference) discrimination thresholds at every point in the space. The major obstacle to understand this space is how to estimate the metric tensor in high dimensions which requires an inaccessible number of psychophysical experiments. In this paper we address two fundamental issues: methods to estimate the Riemann metric tensor in a high dimensional space and how to define and to determine the effective dimensions of Riemann spaces and psychophysical spaces. We introduce new definitions for these dimensions and novel algorithms for estimating the high dimensional Riemann metric tensor and for dimension reduction to low dimensional subspaces. We then apply these algorithms to the facial expressions space. The Riemann metric tensor of the high dimensional facial expression space is estimated from psychophysical measurements of JND data. We apply these methods to investigate the facial expression space. We describe our experiments to estimate the effective dimension (together with upper and lower bounds) of Riemann manifolds and psychophysical spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kambhatla, N., Leen, T.K.: Dimension reduction by local principal component analysis. Neural Comput. 9(7), 1493–1516 (1997)

    Article  Google Scholar 

  2. Richardson, M.W.: Multidimensional psychophysics. Psychol. Bull. 35(9), 659–660 (1938)

    Google Scholar 

  3. Tenenbaum, J.B., De Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  4. Gorban, A.: Principal Manifolds for Data Visualization and Dimension Reduction. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73750-6

    Book  Google Scholar 

  5. Ma, Y., Fu, Y.: Manifold Learning Theory and Applications. CRC Press, Boca Raton (2011)

    Book  Google Scholar 

  6. Goh, A.: Riemann manifold clustering and dimension reduction for vision-based analysis. In: Wang, L., Zhao, G., Cheng, L., Pietikäinen, M. (eds.) Machine Learning for Vision-Based Motion Analysis, pp. 27–53. Springer, London (2011). https://doi.org/10.1007/978-0-85729-057-1_2

    Chapter  Google Scholar 

  7. Brun, A., Westin, C.-F., Herberthson, M., Knutsson, H.: Fast manifold learning based on Riemannian normal coordinates. In: Kalviainen, H., Parkkinen, J., Kaarna, A. (eds.) SCIA 2005. LNCS, vol. 3540, pp. 920–929. Springer, Heidelberg (2005). https://doi.org/10.1007/11499145_93

    Chapter  Google Scholar 

  8. Lin, T., Zha, H.: Riemannian manifold learning. IEEE Trans. Pattern Anal. Mach. Intell. 30(5), 796–809 (2008)

    Article  Google Scholar 

  9. Ekman, P., Friesen, W.V.: Facial Action Coding System: A Technique for the Measurement of Facial Movement. Consulting Psychologists Press, Palo Alto (1978)

    Google Scholar 

  10. Russell, J.A., Bullock, M.: Multidimensional scaling of emotional facial expressions: similarity from preschoolers to adults. J. Pers. Soc. Psychol. 48(5), 1290–1298 (1985)

    Article  Google Scholar 

  11. Young, A.W., Rowland, D., Calder, A.J., et al.: Facial expression megamix: test of dimensional and category accounts of emotion recognition. Cognition 63(3), 271–313 (1997)

    Article  Google Scholar 

  12. Calder, A.J., Burton, A.M., Miller, P., Young, A.W., Akamatsu, S.: A principal component analysis of facial expressions. Vision Res. 41(9), 1179–1208 (2001)

    Article  Google Scholar 

  13. Benitez-Quiroz, C., Srinivasan, R., Martinez, A.M.: EmotioNet: an accurate, real-time algorithm for the automatic annotation of a million facial expressions in the wild. In: Proceedings of IEEE-CVPR (2016)

    Google Scholar 

  14. 3DScanStore. https://www.3dscanstore.com/. Accessed 2 Feb 2020

  15. Sumiya, R., Lenz, R., Chao, J.: Measurement of JND thresholds and Riemannian geometry in facial expression space. In: Kurosu, M. (ed.) HCI 2018. LNCS, vol. 10901, pp. 453–464. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91238-7_37

    Chapter  Google Scholar 

  16. Sumiya, R., Chao, J.: Transform facial expression space to Euclidean space using Riemann normal coordinates and its applications. In: Kurosu, M. (ed.) HCII 2019. LNCS, vol. 11567, pp. 168–178. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22643-5_13

    Chapter  Google Scholar 

  17. Shinto, M., Chao, J.: How to compare and exchange facial expression perceptions between different individuals with Riemann geometry. In: Kurosu, M. (ed.) HCII 2019. LNCS, vol. 11567, pp. 155–167. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22643-5_12

    Chapter  Google Scholar 

  18. MacAdam, D.L.: Visual sensitivities to color differences in daylight. JOSA 32, 247–273 (1942)

    Article  Google Scholar 

  19. Brown, W., MacAdam, D.: Visual sensitivities to combined chromaticity and luminance differences. JOSA 39, 808–823 (1949)

    Article  Google Scholar 

  20. Chao, J., Lenz, R., Matsumoto, D., Nakamura, T.: Riemann geometry for color characterization and mapping. In: Conference on Colour in Graphics, Imaging, and Vision, IS&T, pp. 277–282 (2008)

    Google Scholar 

  21. Chao, J., Osugi, I., Suzuki, M.: On definitions and construction of uniform color space. In: CGIV, IS&T, pp. 55–60 (2004)

    Google Scholar 

  22. Suzuki, M., Chao, J.: On construction of uniform color spaces. IEICE Trans. Fundam. E85-A(9), 2097–2106 (2002)

    Google Scholar 

  23. Ohshima, S., Mochizuki, R., Chao, J., Lenz, R.: Color reproduction using Riemann normal coordinates. In: Trémeau, A., Schettini, R., Tominaga, S. (eds.) CCIW 2009. LNCS, vol. 5646, pp. 140–149. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03265-3_15

    Chapter  Google Scholar 

  24. Mochizuki, R., Kojima, T., Lenz, R., Chao, J.: Color-weak compensation using local affine isometry based on discrimination threshold matching. JOSA 32(11), 2093–2103 (2015)

    Article  Google Scholar 

  25. Oshima, S., Mochizuki, R., Lenz, R., Chao, J.: Modeling, measuring, and compensating color weak vision. IEEE Trans. Image Process. 25(6), 2587–2600 (2016)

    Article  MathSciNet  Google Scholar 

  26. Tasaki, H., Lenz, R., Chao, J.: Simplex-based dimension estimation of topological manifolds. In: Proceedings of ICPR, pp. 3598–3603. IEEE (2016)

    Google Scholar 

  27. Tasaki, H., Lenz, R., Chao, J.: Dimension estimation and topological manifold learning. In: Proceedings of IJCNN, Budapest, 14–19 July 2019. IEEE (2019)

    Google Scholar 

  28. Do Carmo, M.P.: Riemannian Geometry. GTM, vol. 171. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-26654-1_9

    Book  Google Scholar 

  29. Petersen, P.: Riemannian Geometry. GTM, 3rd edn. Springer, New York (2006). https://doi.org/10.1007/978-3-319-26654-1

    Book  MATH  Google Scholar 

Download references

Acknowledgment

This research is supported by the MIC/SCOPE #181603006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinhui Chao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shinto, M., Lenz, R., Chao, J. (2021). Definition and Estimation of Dimension in Facial Expression Space. In: Kurosu, M. (eds) Human-Computer Interaction. Theory, Methods and Tools. HCII 2021. Lecture Notes in Computer Science(), vol 12762. Springer, Cham. https://doi.org/10.1007/978-3-030-78462-1_47

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78462-1_47

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78461-4

  • Online ISBN: 978-3-030-78462-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics