Skip to main content

Evaluating the Accuracy and User Experience of a Gesture-Based Infrared Remote Control in Smart Homes

  • Conference paper
  • First Online:
Human-Computer Interaction. Interaction Techniques and Novel Applications (HCII 2021)

Abstract

To enhance user experience while satisfying basic expectations and needs is the most important goal in the design of assistive technical devices. As a contribution, the user experience with the SmartPointer, a novel hand-held gesture-based remote control for everyday use in the living environment, is being explored in comprehensive user tests. The concept and design of the SmartPointer exploits the user’s familiarity with TV remotes, flashlights or laser pointers. The buttonless device emits both an infrared (IR) and a visible (VIS) laser beam and is designed to be universally and consistently used for a large variety of devices and appliances in private homes out of arm's reach. In the paper, the results of three user studies regarding recognition rates and usability issues are summarized. Study One was a mixed-method study in the pre-implementation stage with 20 older adults, gathering the expectations towards a gesture-based remote control and exploring simple, quasi-intuitive controlling gestures. In Study Two, the acceptance and usability of a prototype of the SmartPointer remote control was verified and compared with a group of 29 users from the target group, exploring 8 most frequently used gestures from Study One. In Study Three, comprehensive gesture-recognition tests with an updated version of the remote were carried out with a group of 11 younger adults in various light conditions, postures and distances to the operated device. All three studies confirm the feasibility of the underlying principle, the usability and satisfaction among the participants and the robustness of the technical solution along with a high success rate of the recognition algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ruser, H., Kaltenbach, A., Mechold, L.: SmartPointer: buttonless remote control based on structured light and intuitive gestures. In: Proceedings of 6th int Workshop on Sensor-Based Activity Recognition and Interaction (iWOAR). Association for Computing Machinery, New York (2019)

    Google Scholar 

  2. Vorwerg, S., et al.: Requirements for gesture-controlled remote operation to facilitate human-technology interaction in the living environment of elderly people. In: Zhou, J., Salvendy, G. (eds.) HCII 2019. LNCS, vol. 11592, pp. 551–569. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22012-9_39

    Chapter  Google Scholar 

  3. Ruser, H., Vorwerg, S., Eicher, C.: Making the home accessible - experiments with an infrared handheld gesture-based remote control. In: Stephanidis, C., Antona, M. (eds.) HCII 2020. CCIS, vol. 1226, pp. 89–97. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50732-9_13

    Chapter  Google Scholar 

  4. Vorwerg, S., Eicher, C., Ruser, H., Piela, F., Obée, F., Mechold, L.: Vergleichsstudie zur Akzeptanz und Usability eines gestengesteuerten Smart Home Systems mit Personen im späten Erwachsenenalter (Comparative study on acceptance and usability of a gesture-controlled smart home system with persons in late adulthood); In: AAL-Kongress 2020, as part of 54th Annual Conference of the German Society for Biomedical Engineering (BMT), Leipzig, Germany (2020)

    Google Scholar 

  5. Rui, L., Zhenyu, L., Jianrong, T.: A survey on 3D hand pose estimation: cameras, methods, and datasets. Pattern Recogn. 93, 251–272 (2019)

    Article  Google Scholar 

  6. Vuletic, T., Duy, A., Hay, L., Mcteague, C., Campbell, G., Grealy, M.: Systematic literature review of hand gestures used in human computer interaction interfaces. Int. J. Hum.-Comput. Stud. 129, 74–94 (2019)

    Article  Google Scholar 

  7. Koutsabasis, P., Vogiatzidakis, P.: Empirical research in mid-air interaction: a systematic review. Int. J. Hum. Comput. Interact. 35(18), 1747–1768 (2019)

    Article  Google Scholar 

  8. Oudah, M., Al-Naji, A., Chahl, J.: Hand gesture recognition based on computer vision: a review of techniques. J. Imaging 6(73) (2020)

    Google Scholar 

  9. Krupka, E., Karmon, K., Bloom, N.: Toward realistic hands gesture interface: keeping it simple for developers and machines. In: Proceedings of CHI 2017, Denver, USA (2017)

    Google Scholar 

  10. Vatavu, R.-D., Anthony, L., Wobbrock, J.O.: $Q: a super-quick, articulation-invariant stroke-gesture recognizer for low-resource devices. In: MobileHCI 2018, pp. 231–239, Barcelona, Spain (2018)

    Google Scholar 

  11. Rise, K., Alsos, O.: The potential of gesture-based interaction. In: Kurosu, M. (ed.) HCII 2020. LNCS, vol. 12182, pp. 125–136. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49062-1_8

    Chapter  Google Scholar 

  12. Dong, H., Danesh, A., Figueroa, N., El. Saddek, A.: An elicitation study on gesture references and memorability toward a practical hand-gesture vocabulary for smart televisions. IEEE Access 3, 543–555 (2015)

    Article  Google Scholar 

  13. Carvalho, D., Silva, T., Abreu, J.: Interaction models for iTV services for elderly people. In: Abásolo, M.J., Silva, T., González, N.D. (eds.) jAUTI 2018. CCIS, vol. 1004, pp. 89–98. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23862-9_7

    Chapter  Google Scholar 

  14. Wu, H., Yang, L., Fu, S., Zhang, X.: Beyond remote control: exploring natural gesture inputs for smart TV systems. J. Ambient Intell. Smart Environ. 11(4), 335–354 (2019)

    Article  Google Scholar 

  15. Vogiatzidakis, P., Koutsabasis, P.: Frame-based elicitation of mid-air gestures for a smart home device ecosystem. Informatics 6(23), MDPI (2019)

    Google Scholar 

  16. Villarreal-Narvaez, S., Vanderdonckt, J., Vatavu, R.-D., Wobbrock, J.O.: Systematic review of gesture elicitation studies: what can we learn from 216 studies? In: ACM Designing Interactive Systems Conference (DIS 2020), Eindhoven, Netherlands, pp. 855–872 (2020)

    Google Scholar 

  17. Vatavu, R.-D., Vanderdonckt, J.: What gestures do users with visual impairments prefer to interact with smart devices? In: ACM Designing Interactive Systems Conference (DIS 2020), Eindhoven, Netherlands, pp. 85–90 (2020)

    Google Scholar 

  18. Kühnel, C., Westermann, T., Hemmert, F., Kratz, S., Müller, A., Möller, S.: I’m home: defining and evaluating a gesture set for smart-home control. Int. J. Hum.-Comput. Stud. 69, 693–704 (2011)

    Article  Google Scholar 

  19. Choi, E., Kwon, S., Lee, D., et al.: Towards successful user interaction with systems: focusing on user-derived gestures for smart home systems. Appl. Ergon. 45(4), 1196–1207 (2014)

    Article  Google Scholar 

  20. Hoffmann, F., Tyroller, M., Wende, F., Henze, N.: User-defined interaction for smart homes: voice, touch, or mid-air gestures? In: Proceedings of 18th International Conference on Mobile and Ubiquitous Multimedia (MUM 2019), Pisa, Italy (2019)

    Google Scholar 

  21. Nielsen, M., Störring, M., Moeslund, T.B., Granum, E.: A procedure for developing intuitive and ergonomic gesture interfaces for HCI. In: Camurri, A., Volpe, G. (eds.) GW 2003. LNCS (LNAI), vol. 2915, pp. 409–420. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24598-8_38

    Chapter  Google Scholar 

  22. Wobbrock, J.O., Morris, M.R., Wilson, A.D.: User-defined gestures for surface computing. In: 27th Conference on Human Factors in Computing Systems (CHI 2009). ACM Press, New York (2009)

    Google Scholar 

  23. Stern, H., Wachs, J., Edan, Y.: A method for selection of optimal hand gesture vocabularies. In: Sales Dias, M., Gibet, S., Wanderley, M.M., Bastos, R. (eds.) GW 2007. LNCS (LNAI), vol. 5085, pp. 57–68. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-92865-2_6

    Chapter  Google Scholar 

  24. Pereira, A., Wachs, J., Park, K., Rempel, D.: A user-developed 3-D hand gesture set for human-computer interaction. Hum. Fact. 57(4), 607–621 (2015)

    Article  Google Scholar 

  25. Honig, Sh., Oron-Gilad, T.: Comparing laboratory user studies and video-enhanced web surveys for eliciting user gestures in human-robot interactions. In: 2020 ACM/IEEE International Conference on Human-Robot Interaction (HRI 2020). ACM (2020)

    Google Scholar 

  26. Zaiti, I., Pentiuc, S., Vatavu, R.-D.: On free-hand TV control: experimental results on user-elicited gestures with leap motion. Pers. Ubiquitous Comput. 19, 821–838 (2015)

    Article  Google Scholar 

  27. Katz, S., Kaplan, N., Grossinger, I.: Using diffractive optical elements - DOEs for beam shaping – fundamentals and applications. Optik&Photonik 4, 83–86 (2018)

    Google Scholar 

  28. Ruser, H., Kaltenbach, A., Mechold, L., Obée, F., Piela, F.: Low-cost gestural interaction based on motion estimation of a projected dot pattern. In: Proceedings of IEEE Sensors Conference, Rotterdam, Netherlands (2020)

    Google Scholar 

  29. Hassenzahl, M., Tractinsky, N.: User experience – a research agenda. Behav. Inf. Technol. 25(2), 91–97 (2006)

    Article  Google Scholar 

  30. McDowell, I.: Measuring Health - A Guide to Rating Scales and Questionnaires. Oxford University Press, Oxford (2006)

    Book  Google Scholar 

  31. Bangor, A., Kortum, P., Miller, J., An empirical evaluation of the system usability scale. Int. J. Hum.-Comput. Interact. 24(6), 574–594 (2008)

    Google Scholar 

  32. Ferron, M., Mana, N., Mich, O.: Designing mid-air gesture interaction with mobile devices for older adults. In: Sayago, S. (ed.) Perspectives on Human-Computer Interaction Research with Older People. HIS, pp. 81–100. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-06076-3_6

    Chapter  Google Scholar 

  33. Grandhi, S.A., Joue, G., Mittelberg, I.: Understanding naturalness and intuitiveness in gesture production: insights for touchless gestural interfaces. In: 29th Conference on Human Factors in Computing Systems (CHI 2011), pp. 821–824. ACM (2011)

    Google Scholar 

  34. Kirsh, I., Ruser, H.: Phone-pointing remote app: Using smartphones as pointers in gesture-based IoT remote controls. In: Proceedings of 23rd HCI International Conference (HCII’21), CCIS 1420, Springer (2021). https://doi.org/10.1007/978-3-030-78642-7_3

Download references

Acknowledgments

This work was supported by the German Federal Ministry of Education and Research (BMBF) in the SME-Innovative Human-Technology Interaction Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heinrich Ruser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ruser, H. et al. (2021). Evaluating the Accuracy and User Experience of a Gesture-Based Infrared Remote Control in Smart Homes. In: Kurosu, M. (eds) Human-Computer Interaction. Interaction Techniques and Novel Applications. HCII 2021. Lecture Notes in Computer Science(), vol 12763. Springer, Cham. https://doi.org/10.1007/978-3-030-78465-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78465-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78464-5

  • Online ISBN: 978-3-030-78465-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics