Skip to main content

Interaction with Objects and Humans Based on Visualized Flow Using a Background-Oriented Schlieren Method

  • Conference paper
  • First Online:
Human-Computer Interaction. Design and User Experience Case Studies (HCII 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12764))

Included in the following conference series:

  • 2036 Accesses

Abstract

Air flow is a ubiquitous phenomenon that can provide important insights to extend our perceptions and intuitive interactions with our surroundings. This study aimed to explore interaction methods based on flow visualization using background-oriented schlieren (BOS) in three case studies. Case 1 involved visualization of the airflow around humans or objects, which demonstrated that visualized flow provides meaningful information about the human or object under investigation. Case 2 involved the testing of a prototype sensor, where visualized flow was used to sense fine airflow. Stabilization of the flow was required for operation of the sensor. Case 3 involved the testing of a prototype system to investigate the use of flow as an input interface for playing a video game. The system did not operate as expected, but the design of the flow can be improved. Overall, interaction using flow visualization allows for the perception of air flow in a broad sense, and presents new opportunities in the field of human computer interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akatsuka, J., Nagai, S.: Flow visualization by a simplified BOS technique. In: 29th AIAA Applied Aerodynamics Conference, p. 3653 (2011). https://doi.org/10.2514/6.2011-3653

  2. Alakärppä, I., Jaakkola, E., Colley, A., Häkkilä, J.: BreathScreen: design and evaluation of an ephemeral UI. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 4424–4429 (2017). https://doi.org/10.1145/3025453.3025973

  3. Alrøe, T., Grann, J., Grönvall, E., Petersen, M.G., Rasmussen, J.L.: Aerial tunes: exploring interaction qualities of mid-air displays. In: Proceedings of the 7th Nordic Conference on Human-Computer Interaction: Making Sense Through Design, pp. 514–523 (2012). https://doi.org/10.1145/2399016.2399095

  4. Atcheson, B., et al.: Time-resolved 3D capture of non-stationary gas flows. ACM Trans. Graph. (TOG) 27(5), 1–9 (2008). https://doi.org/10.1145/1409060.1409085

    Article  Google Scholar 

  5. Gibson, J.J.: The theory of affordances. Hilldale USA 1(2), 67–82 (1977)

    Google Scholar 

  6. Han, P.H., et al.: AoEs: enhancing teleportation experience in immersive environment with mid-air haptics. In: ACM SIGGRAPH 2017 Emerging Technologies, pp. 1–2 (2017). https://doi.org/10.1145/3084822.3084823

  7. Hatanaka, K., Hirota, M., Saito, T.: 0407 visualization of free jet with BOS method using colored grid back ground pattern containing two frequency components (in Japanese). In: JSME Fluids Engineering Conference 2012, pp. 203–204. The Japan Society of Mechanical Engineers (2012). https://doi.org/10.1299/jsmefed.2012.203

  8. Kaptelinin, V.: Affordances and Design. The Interaction Design Foundation, Aarhus (2014)

    Google Scholar 

  9. Le Sant, Y., Todoroff, V., Bernard-Brunel, A., Le Besnerais, G., Micheli, F., Donjat, D.: Multi-camera calibration for 3DBOS. In: 17th International Symposium on Applications of Laser Techniques to Fluid Mechanics (2014)

    Google Scholar 

  10. Loving, D.L., Katzoff, S.: The fluorescent-oil film method and other techniques for boundary-layer flow visualization (1959)

    Google Scholar 

  11. Meier, G.E.: Hintergrundschlierenverfahren. Germany Pat., DE 19942856 A 1 (1999)

    Google Scholar 

  12. Meier, G.E.: On the origin of BOS. In: Proceedings 18th International Symposium on Flow Visualization. ETH Zurich (2018). https://doi.org/10.3929/ethz-b-000279170

  13. Nicolas, F., et al.: A direct approach for instantaneous 3D density field reconstruction from background-oriented schlieren (BOS) measurements. Exp. Fluids 57(1), 13 (2016). https://doi.org/10.1007/s00348-015-2100-x

    Article  Google Scholar 

  14. Norman, D.A.: The Psychology of Everyday Things. Basic Books, New York (1988)

    Google Scholar 

  15. Ota, M., Hamada, K., Kato, H., Maeno, K.: Computed-tomographic density measurement of supersonic flow field by colored-grid background oriented schlieren (CGBOS) technique. Meas. Sci. Technol. 22(10), 104011 (2011). https://doi.org/10.1088/0957-0233/22/10/104011

    Article  Google Scholar 

  16. Picard, A., Davis, R., Gläser, M., Fujii, K.: Revised formula for the density of moist air (CIPM-2007). Metrologia 45(2), 149 (2008). https://doi.org/10.1088/0026-1394/45/2/004

    Article  Google Scholar 

  17. Raffel, M.: Background-oriented schlieren (BOS) techniques. Exp. Fluids 56(3), 1–17 (2015). https://doi.org/10.1007/s00348-015-1927-5

    Article  Google Scholar 

  18. Richard, H., Raffel, M., Rein, M., Kompenhans, J., Meier, G.: Demonstration of the applicability of a background oriented schlieren (BOS) method. In: Laser Techniques for Fluid Mechanics, pp. 145–156. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-662-08263-8_9

  19. Seah, S.A., et al.: SensaBubble: a chrono-sensory mid-air display of sight and smell. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2863–2872 (2014). https://doi.org/10.1145/2556288.2557087

  20. Shelquist, R.: Equations - air density and density altitude. https://wahiduddin.net/calc/density_altitude.htm. Accessed 02 Aug 2021

  21. Sodhi, R., Poupyrev, I., Glisson, M., Israr, A.: AIREAL: interactive tactile experiences in free air. ACM Trans. Graph. (TOG) 32(4), 1–10 (2013). https://doi.org/10.1145/2461912.2462007

    Article  Google Scholar 

  22. Taberlet, N., Plihon, N., Auzémery, L., Sautel, J., Panel, G., Gibaud, T.: Synthetic schlieren—Application to the visualization and characterization of air convection. Eur. J. Phys. 39(3), 035803 (2018). https://doi.org/10.1088/1361-6404/aaa791

    Article  Google Scholar 

  23. Wernet, M.P.: Real-time background oriented schlieren: catching up with knife edge schlieren (2019)

    Google Scholar 

Download references

Acknowledgments

We would also like to thank Assistant Professor Fushimi for his supervision of the experiment in Case 2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shieru Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Suzuki, S., Sasaguri, S., Ochiai, Y. (2021). Interaction with Objects and Humans Based on Visualized Flow Using a Background-Oriented Schlieren Method. In: Kurosu, M. (eds) Human-Computer Interaction. Design and User Experience Case Studies. HCII 2021. Lecture Notes in Computer Science(), vol 12764. Springer, Cham. https://doi.org/10.1007/978-3-030-78468-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78468-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78467-6

  • Online ISBN: 978-3-030-78468-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics