Skip to main content

Multi-penalty Functions GANs via Multi-task Learning

  • Conference paper
  • First Online:
Artificial Intelligence and Security (ICAIS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12736))

Included in the following conference series:

  • 2061 Accesses

Abstract

Adversarial learning stability is one of the difficulties of generative adversarial networks (GANs), which is closely related to networks convergence and generated images quality. For improving the stability, the multi-penalty functions GANs (MPF-GANs) is proposed. In this novel GANs, penalty function method is used to transform unconstrained GANs model into constrained model to improve adversarial learning stability and generated images quality. In optimization divergence tasks, two penalty divergences (Wassertein distance and Jensen-Shannon divergence) are added in addition to the main optimization divergence (reverse Kullback-Leibler divergence). In network structure, in order to realize the multi-divergence optimization tasks, the generator and discriminator are multi-task networks. Every generator subtask corresponds to a discriminator subtask to optimize the corresponding divergence. In CELEBA and CIFAR10 data sets, the experimental results show that although the number of parameters is increased, the adversarial learning stability and generated images quality are significantly improved. The performance of the novel GANs is better than most GANs models, close to state-of-the-art models, SAGANs and SNGANs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Goodfellow, I.J., Pouget-Abadie, J., Mirza, M., et al.: Generative adversarial nets. In: International Conference on Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  2. Gui, J., Sun, Z.N., Wen, Y.G., et al.: A review on generative adversarial networks: algorithms, theory, and applications. arXiv:2001.06937v1 (2020)

  3. Hong, Y.J., Hwang, U., Yoo, J., et al.: How generative adversarial networks and their variants work: an overview. ACM Comput. Surv. 52(1), Article 10, 1–43 (2019)

    Google Scholar 

  4. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: International Conference on Learning Representations (2016)

    Google Scholar 

  5. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein GAN. arXiv:1701.07875v3 (2017)

  6. Gulrajani, I., Ahmed, F., Arjovsky, M., et al.: Improved training of Wasserstein GANs. In: International Conference on Neural Information Processing Systems, pp. 5769–5779 (2017)

    Google Scholar 

  7. Zhou, C.S., Zhang, J.S., Liu, J.M.: Lp-WGAN: using Lp-norm normalization to stabilize wasserstein generative adversarial networks. Knowl.-Based Syst. 161(2018), 415–424 (2018)

    Article  Google Scholar 

  8. Berthelot, D., Schumm, T., Metz, L.: BEGAN: boundary equilibrium generative adversarial networks. arXiv:1703.10717v4 (2017)

  9. Wu, J.Q., Huang, Z.W., Thoma, J., et al.: Wasserstein divergence for GANs. arXiv:1712.01026v4 (2018)

  10. Su, J.L.: GAN-QP: a novel GAN framework without gradient vanishing and Lipschitz constraint. arXiv:1811.07296v2 (2018)

  11. Basioti, K., Moustakides, G.V.: Designing GANs: a likelihood ratio approach. arXiv:2002.00865v2 (2020)

  12. Mao, X.D., Li, Q., Xie, H.R., et al.: Least squares generative adversarial networks. In: IEEE International Conference on Computer Vision, pp. 2813–2821 (2017)

    Google Scholar 

  13. Nguyen, T.D., Le, T., Vu, H., et al.: Dual discriminator generative adversarial nets. In: International Conference on Neural Information Processing Systems (2017)

    Google Scholar 

  14. Miyato, T., Kataoka, T., Koyama, M., et al.: Spectral normalization for generative adversarial networks. In: International Conference on Learning Representations (2018)

    Google Scholar 

  15. Su, J.L.: Training generative adversarial networks via turing test. arXiv:1810.10948v2 (2018)

  16. Jolicoeur-Martineau, A.: The relativistic discriminator: a key element missing from standard GAN. In: International Conference on Learning Representations (2019)

    Google Scholar 

  17. Peng, X.B., Kanazawa, A., Toyer, S., et al.: Variational discriminator bottleneck improving imitation learning, inverse RL, and GANs by constraining information flow. In: International Conference on Learning Representations (2019)

    Google Scholar 

  18. Denton, E., Chintala, S., Szlam, A., et al.: Deep generative image using a laplacian pyramid of adversarial networks. In: International Conference on Neural Information Processing Systems, pp. 1486–1494 (2015)

    Google Scholar 

  19. Karras, T., Aila, T., Laine, S., et al.: Progressive growing of GANs for improved quality, stability, and variation. In: International Conference on Learning Representations (2018)

    Google Scholar 

  20. Karnewar, A., Wang, O.: MSG-GAN: multi-scale gradients for generative adversarial networks. In: International Conference on Computer Vision and Pattern Recognition, pp. 7799–7808 (2020)

    Google Scholar 

  21. Chu, C., Minami, K., Fukumizu, K.: Smoothness and stability in GANs. In: International Conference on Learning Representations (2020)

    Google Scholar 

  22. Zhang, H., Goodfellow, I., Metaxas, D., et al.: Self-attention generative adversarial networks. In: International Conference on Machine Learning (2019)

    Google Scholar 

  23. Chen, T., Zhai, X.H., Ritter, M., et al.: Self-supervised GANs via auxiliary rotation loss. In: IEEE Conference on Computer Vision and Pattern Recognition (2019)

    Google Scholar 

  24. Xiangli, Y.B., Deng, Y.B., Dai, B., et al.: Real or not real, that is the question. In: International Conference on Learning Representations (2020)

    Google Scholar 

  25. Fan, J.Q., Xue, L.Z., Zou, H.: Strong oracle optimality of folded concave penalized estimation. Ann. Stat. 42(3), 819–849 (2014)

    MathSciNet  MATH  Google Scholar 

  26. Armand, P., Omheni, R.: A mixed logarithmic barrier-augmented lagrangian method for nonlinear optimization. J. Optim. Theory Appl. 173(2), 523–547 (2017)

    Article  MathSciNet  Google Scholar 

  27. Xu, X.S., Dang, C.Y., Chan, F.T.S., et al.: On smoothing L1 exact penalty function for constrained optimization problems. Numer. Funct. Anal. Optim. 40(1), 1–18 (2019)

    Article  MathSciNet  Google Scholar 

  28. Jayswal, A., Preeti: An exact L1 penalty function method for multi-dimensional first-order PDE constrained control optimization problem. Eur. J. Control 52(2020), 34–41 (2020)

    Google Scholar 

  29. Li, N., Yang, H.: Nonnegative estimation and variable selection under minimax concave penalty for sparse high-dimensional linear regression models. Stat. Pap. 62(2), 661–680 (2019). https://doi.org/10.1007/s00362-019-01107-w

    Article  MathSciNet  Google Scholar 

  30. Ruder, S.: An overview of multi-task learning in deep neural networks. arXiv:1706.05098v1 (2017)

  31. Vandenhende, S., Georgoulis, S., Proesmans, M., et al.: Revisiting multi-task learning in the deep learning era. arXiv:2004.13379v1 (2020)

  32. He, K.M., Zhang, X.Y., Ren, S.Q., et al.: Deep residual learning for image recognition. In: International Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  33. He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 630–645. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_38

    Chapter  Google Scholar 

Download references

Acknowledgments

This work is supported by National Natural Science Foundation of China (Grant Nos. U1936113 and 61872303).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongjie He .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, H., He, H., Chen, F. (2021). Multi-penalty Functions GANs via Multi-task Learning. In: Sun, X., Zhang, X., Xia, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2021. Lecture Notes in Computer Science(), vol 12736. Springer, Cham. https://doi.org/10.1007/978-3-030-78609-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78609-0_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78608-3

  • Online ISBN: 978-3-030-78609-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics