Skip to main content

Research on Deep Learning Denoising Method in an Ultra-Fast All-Optical Solid-State Framing Camera

  • Conference paper
  • First Online:
  • 1729 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12736))

Abstract

The ultra-fast all-optical solid-state framing camera (UASFC) is a new type of X-ray ultra-fast diagnostic technology. It uses X-ray excitation to change the refractive index distribution of the ultra-fast detection chip, and time-tuned multi-wavelength probe light for ultra-fast detection on the order of picoseconds or less. Due to the uneven intensity of the probe light wavelength and spatial diffraction, the noise of the detection image is too high, which directly affects the spatial and temporal resolution of the system. To improve the detection performance of the UASFC system, we adopted NLM image optimization technology based on a convolutional neural network, using 50 shots of the reticle image as the learning set and iterating the weight of the NLM image optimization filter. The CCD image obtained by the four-channel wavelength spectroscopy system is noise-reduced and optimized, which greatly improves the image contrast and edge definition, reduces image noise, and further improves the time and space resolution of the UASFC system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Baker, K.L., Stewart, R.E., Steele, P.T., Vernon, S.P., Hsing, W.W.: Ultrafast semiconductor x-ray detector. Appl. Phys. Lett. 101(3), 031107 (2012)

    Article  Google Scholar 

  2. Vernon, S.P., et al.: X-ray bang-time and fusion reaction history at picosecond resolution using RadOptic detection. Rev. Sci. Instrum. 83(10), 10d307 (2012)

    Article  Google Scholar 

  3. Apruzese, J.P., Thornhill, J.W., Whitney, K.G., et al.: Comparative analysis of time-resolved and time-integrated x-ray data from long pulse Z-pinch implosions on Saturn. Phys. Plasmas 8(8), 3799–3809 (2001)

    Article  Google Scholar 

  4. Lazier, S.E., Barber, T.L., Derzon, M.S., et al.: Time and space resolved measurements of visible-light and soft x-ray emission from foam z-pinch plasmas and implosions. Rev. Sci. Instrum. 68(1), 660–663 (1997)

    Article  Google Scholar 

  5. Byrd, J.M., Feng, J., Huang, G., et al.: Progress on modeling of ultrafast x-ray streak cameras. In: IEEE Proceedings of Particle Accelerator Conference, pp. 3961–3963 (2007)

    Google Scholar 

  6. Oertel, J.A.: A large-format gated x-ray framing camera. In: Proceedings of SPIE - The International Society for Optical Engineering, vol. 5194, pp. 214–222 (2004)

    Google Scholar 

  7. Hilsabeck, T.J., Hares, J.D., Kilkenny, J.D., et al.: Pulse-dilation enhanced gated optical imager with 5 ps resolution. Rev. Sci. Instrum 81(10), 10E317 (2010)

    Article  Google Scholar 

  8. Bionta, M.R., Hartmann, N., Weaver, M., et al.: Spectral encoding method for measuring the relative arrival time between x-ray/optical pulses. Rev. Sci. Instrum. 85(8), 083116 (2014)

    Article  Google Scholar 

  9. Gao, G.L., He, K., Tian, J.S., Zhang, C.M., Zhang, J., Wang, T., et al.: Ultrafast all-optical solid-state framing camera with picosecond temporal resolution. Opt. Exp. 25, 8721 (2017)

    Article  Google Scholar 

  10. Gao, G.L., Tian, J.S., Wang, T., He, K., Zhang, C.M., et al.: Ultrafast all-optical imaging technique using low-temperature grown GaAs/AlxGa1-xAs multiple quantum well semiconductor. Phys. Lett. A 381, 3594–3598 (2017)

    Article  Google Scholar 

  11. Chen, P., Qian, H., Zhu, M.: Fast Gaussian particle filtering algorithm. J. Huazhong Univ. Sci. Technol. (2008)

    Google Scholar 

  12. Elad, M.: On the origin of the bilateral filter and ways to improve it. IEEE Trans. Image Process. 11(10), 1141–1151 (2002)

    Article  MathSciNet  Google Scholar 

  13. Haichun, N.: Enhancement and binary representation of laser facula. J. Harbin Inst. Technol. 35(8), 916–918 (2003)

    Google Scholar 

  14. Liu, J.B., Liu, B.Z.: Non-local mean image denoising method based on deep learning. Comput. Simul. 37(8), 228–234 (2020)

    Google Scholar 

  15. Buades, A., Coll, B., Morel, J.M.: A non-local algorithm for image denoising. In: Computer Vision and Pattern Recognition, vol. 2, pp. 60–65 (2005)

    Google Scholar 

  16. Hu, J., Lu, H.L., Zhang, J.: Laser image enhancement based on convolutional neural network. Laser J. 41(9), 147–150 (2020)

    Google Scholar 

  17. Dai, Z., Yang, Y.: Ultrasound image denoising based on deep learning. Inf. Technol. 9, 57–60 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fei Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, J. et al. (2021). Research on Deep Learning Denoising Method in an Ultra-Fast All-Optical Solid-State Framing Camera. In: Sun, X., Zhang, X., Xia, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2021. Lecture Notes in Computer Science(), vol 12736. Springer, Cham. https://doi.org/10.1007/978-3-030-78609-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78609-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78608-3

  • Online ISBN: 978-3-030-78609-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics