Skip to main content

Halftone Image Steganography Based on Minimizing Distortion with Pixel Density Transition

  • Conference paper
  • First Online:
Artificial Intelligence and Security (ICAIS 2021)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12737))

Included in the following conference series:

Abstract

Many advanced halftone steganographic schemes focus only on the distortion of human visual perception or the distortion according to statistics. In this paper, a halftone image steganography based on minimizing distortion with density transition is proposed which aims at utilizing the entropy model and pixel density to resist potential steganalysis. First, the entropy model is established on the image database to describe the texture content and transformed to the preliminary distortion score map. Because the form of texture presentation is distinct between halftone images and ordinary binary images, the feature of pixel density is introduced to represent the local intensity in images. Then the pixel density transition adjustment based on the entropy model is presented, which makes the distortion score more reliable. The final additive distortion map is generated by combining the entropy model and the strategy of density transition. To play the advantage of distortion measurement, syndrome-trellis code (STC) is applied with the distortion map to minimize the embedding distortions. Experimental results demonstrate that compared with other halftone steganographic schemes, the proposed method achieves high statistical security and great visual quality with considerable embedding capacity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arham, A., Nugroho, H.A., Adji, T.B.: Multiple layer data hiding scheme based on difference expansion of quad. Signal Process. 137, 52–62 (2017)

    Article  Google Scholar 

  2. Bas, P., Filler, T., Pevný, T.: “Break our steganographic system”: the ins and outs of organizing BOSS. In: Filler, T., Pevný, T., Craver, S., Ker, A. (eds.) IH 2011. LNCS, vol. 6958, pp. 59–70. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-24178-9_5

    Chapter  Google Scholar 

  3. Bayer, B.E.: An optimum method for two-level rendition of continuous tone pictures. In: IEEE International Conference on Communications, vol. 26 (1973)

    Google Scholar 

  4. Burrus, N., Bernard, T.M.: Adaptive vision leveraging digital retinas: extracting meaningful segments. In: Blanc-Talon, J., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2006. LNCS, vol. 4179, pp. 220–231. Springer, Heidelberg (2006). https://doi.org/10.1007/11864349_20

    Chapter  Google Scholar 

  5. Cao, H., Kot, A.C.: On establishing edge adaptive grid for bilevel image data hiding. IEEE Trans. Inf. Forensics Secur. 8(9), 1508–1518 (2013)

    Article  Google Scholar 

  6. Cheddad, A., Condell, J., Curran, K., Mc Kevitt, P.: Digital image steganography: Survey and analysis of current methods. Signal Process. 90(3), 727–752 (2010)

    Article  Google Scholar 

  7. Chiew, K.L., Pieprzyk, J.: Binary image steganographic techniques classification based on multi-class Steganalysis. In: Kwak, J., Deng, R.H., Won, Y., Wang, G. (eds.) ISPEC 2010. LNCS, vol. 6047, pp. 341–358. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12827-1_25

    Chapter  Google Scholar 

  8. Feng, B., Lu, W., Sun, W.: High capacity data hiding scheme for binary images based on minimizing flipping distortion. In: Shi, Y.Q., Kim, H.-J., Pérez-González, F. (eds.) IWDW 2013. LNCS, vol. 8389, pp. 514–528. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43886-2_37

    Chapter  Google Scholar 

  9. Feng, B., Lu, W., Sun, W.: Binary image Steganalysis based on pixel mesh Markov transition matrix. J. Vis. Commun. Image Represent. 26, 284–295 (2015)

    Article  Google Scholar 

  10. Feng, B., Lu, W., Sun, W.: Secure binary image steganography based on minimizing the distortion on the texture. IEEE Trans. Inf. Forensics Secur. 10(2), 243–255 (2015)

    Article  Google Scholar 

  11. Filler, T., Judas, J., Fridrich, J.: Minimizing additive distortion in steganography using syndrome-trellis codes. IEEE Trans. Inf. Forensics Secur. 6(3), 920–935 (2011)

    Article  Google Scholar 

  12. Fridrich, J., Kodovsky, J.: Rich models for Steganalysis of digital images. IEEE Trans. Inf. Forensics Secur. 7(3), 868–882 (2012)

    Article  Google Scholar 

  13. Fu, M.S., Au, O.C.: Halftone image data hiding with intensity selection and connection selection. Signal Proces. Image Commun. 16(10), 909–930 (2001)

    Article  Google Scholar 

  14. Fu, M.S., Au, O.C.: Data hiding watermarking for halftone images. IEEE Trans. Image Process. 11(4), 477–484 (2002)

    Article  Google Scholar 

  15. Fu, M.S., Au, O.C.: Data hiding for halftone images. In: Security and Watermarking of Multimedia Contents II, vol. 3971, pp. 228–236. International Society for Optics and Photonics (2000)

    Google Scholar 

  16. Guo, J.M.: Improved data hiding in halftone images with cooperating pair toggling human visual system. Int. J. Imaging Syst. Technol. 17(6), 328–332 (2007)

    Article  Google Scholar 

  17. Guo, M., Zhang, H.: High capacity data hiding for halftone image authentication. In: Shi, Y.Q., Kim, H.-J., Pérez-González, F. (eds.) IWDW 2012. LNCS, vol. 7809, pp. 156–168. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40099-5_14

    Chapter  Google Scholar 

  18. Guo, Y., Au, O.C., Wang, R., Fang, L., Cao, X.: Halftone image watermarking by content aware double-sided embedding error diffusion. IEEE Trans. Image Process. 27(7), 3387–3402 (2018)

    Article  MathSciNet  Google Scholar 

  19. Jarvis, J.F., Judice, C.N., Ninke, W.: A survey of techniques for the display of continuous tone pictures on bilevel displays. Comput. Graphics Image Process. 5(1), 13–40 (1976)

    Article  Google Scholar 

  20. Kim, S.H., Allebach, J.P.: Impact of HVS models on model-based halftoning. IEEE Trans. Image Process. 11(3), 258–269 (2002)

    Article  Google Scholar 

  21. Knuth, D.E.: Digital halftones by dot diffusion. ACM Trans. Graph. 6(4), 245–273 (1987)

    Article  MathSciNet  Google Scholar 

  22. Liao, X., Qin, Z., Ding, L.: Data embedding in digital images using critical functions. Signal Proces. Image Commun. 58, 146–156 (2017)

    Article  Google Scholar 

  23. Lien, B.K., Lan, Z.L.: Improved halftone data hiding scheme using Hilbert curve neighborhood toggling. In: Seventh International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 73–76. IEEE (2011)

    Google Scholar 

  24. Liu, W., et al.: Secure halftone image steganography with minimizing the distortion on pair swapping. Signal Process. 167, 107287 (2020)

    Google Scholar 

  25. Lu, H., Kot, A.C., Shi, Y.Q.: Distance-reciprocal distortion measure for binary document images. IEEE Signal Process. Lett. 11(2), 228–231 (2004)

    Article  Google Scholar 

  26. Lu, W., He, L., Yeung, Y., Xue, Y., Liu, H., Feng, B.: Secure binary image steganography based on fused distortion measurement. IEEE Trans. Circuits Syst. Video Technol. 29(6), 1608–1618 (2019)

    Article  Google Scholar 

  27. Lu, W., Xue, Y., Yeung, Y., Liu, H., Huang, J., Shi, Y.: Secure halftone image steganography based on pixel density transition. IEEE Trans. Dependable Secure Comput. (2019). https://doi.org/10.1109/TDSC.2019.2933621

    Article  Google Scholar 

  28. Ren, Y., Liu, F., Lin, D., Feng, R., Wang, W.: A new construction of tagged visual cryptography scheme. In: Shi, Y.-Q., Kim, H.J., Pérez-González, F., Echizen, I. (eds.) IWDW 2015. LNCS, vol. 9569, pp. 433–445. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-31960-5_35

    Chapter  Google Scholar 

  29. Steinberg, R., Floyd, L.: An adaptive algorithm for spatial greyscale. Proc. Soc. 17, 75–77 (1976)

    Google Scholar 

  30. Ulichney, R.: Digital Halftoning. MIT Press, Cambridge (1987)

    Google Scholar 

  31. Wu, M., Liu, B.: Data hiding in binary image for authentication and annotation. IEEE Trans. Multimedia 6(4), 528–538 (2004)

    Article  Google Scholar 

  32. Yeung, Y., Lu, W., Xue, Y., Huang, J., Shi, Y.Q.: Secure binary image steganography with distortion measurement based on prediction. IEEE Trans. Circuits Syst. Video Technol. 30(5), 1423–1434 (2020)

    Article  Google Scholar 

  33. Yi, S., Zhou, Y.: Separable and reversible data hiding in encrypted images using parametric binary tree labeling. IEEE Trans. Multimedia 21(1), 51–64 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Key Areas R&D Program of Guangdong (No. 2019B010136002), the National Natural Science Foundation of China (No. U2001202, No. 62072480, No. U1736118), the National Key R&D Program of China (No. 2019QY2202, No. 2019QY(Y)0207), the Key Scientific Research Program of Guangzhou (No. 201804020068).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yu, M., Luo, J., Xu, B., Chen, G., Lu, W. (2021). Halftone Image Steganography Based on Minimizing Distortion with Pixel Density Transition. In: Sun, X., Zhang, X., Xia, Z., Bertino, E. (eds) Artificial Intelligence and Security. ICAIS 2021. Lecture Notes in Computer Science(), vol 12737. Springer, Cham. https://doi.org/10.1007/978-3-030-78612-0_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78612-0_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78611-3

  • Online ISBN: 978-3-030-78612-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics