Skip to main content

PatchAi: An e-Health Application Powered by an AI Virtual Assistant to Support Patients in Their Clinical Trials

  • Conference paper
  • First Online:
HCI International 2021 - Posters (HCII 2021)

Abstract

In the last decade, there has been a rapid widespread of applications that support different types of patients in self-managing some aspects concerning their health (e.g., drugs assumption) and reporting specific relevant events (e.g., symptoms) daily. Furthermore, these apps turn out to be very important for patients in social isolation and lockdown due to pandemics in which direct contact with their physicians may be hampered and not frequent. Despite the importance of such applications, patients often cease to use them for several reasons increasing the drop-out rate of clinical research. The current paper describes PatchAi, an end-to-end patient engagement solution. The mobile health solution of PatchAi has been designed and developed following a user-centric perspective, intended to support patients and doctors, reduce drop-out rates, while improving patient adherence to protocols and care schedules in clinical trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bahia, L.R., et al.: The costs of type 2 diabetes mellitus outpatient care in the Brazilian public health system. Value Health 14, S137e40 (2011). https://doi.org/10.1016/j.jval.2011.05.009

  2. World Health Organization: The World Health Report 2003: reducing risks promoting healthy life. World Health Organization, Geneva (2002)

    Google Scholar 

  3. de Oliveira, S.F.D., de Duarte, Y.A.O., Lebrão, M.L., Laurenti, R.: Demanda referida e auxílio recebido por idosos com declínio cognitivo no município de São Paulo. Saúde e Sociedade 16, 81e9 (2007). https://doi.org/10.1590/S0104-12902007000100008

  4. Oliveira, L.S., Rabelo, D.F., Caires Queroz, N.: Life style, perceived control and quality of life: a study with the aged population of Patos de Minas-MG. Estudos e Pesquisas em Psicologia 12, 416e30 (2012)

    Google Scholar 

  5. Nahar, P., Kannuri, N.K., Mikkilineni, S., Murthy, G.V.S., Phillimore, P.: mHealth and the management of chronic conditions in rural areas: a note of caution from southern India. Anthropol. Med. 24, 1e16 (2017). https://doi.org/10.1080/13648470.2016.1263824

  6. Isakovic, M., Sedlar, U., Volk, M., Bester, J.: Usability pitfalls of diabetes mHealth apps for the elderly. J. Diabetes Res. 2016, 1604609 (2016). https://doi.org/10.1155/2016/1604609

    Article  Google Scholar 

  7. Slater, H., Campbell, J.M., Stinson, J.N., Burley, M.M., Briggs, A.M.: End user and implementer experiences of mHealth technologies for noncommunicable chronic disease management in young adults: systematic review. J. Med. Internet Res. 19, e406 (2017). https://doi.org/10.2196/jmir.8888

    Article  Google Scholar 

  8. Quaosar, G.M.A.A., Hoque, M.R., Bao, Y.: Investigating factors affecting elderly’s intention to use m-health services: an empirical study. Telemed. J. e Health 24, 309e14 (2018). https://doi.org/10.1089/tmj.2017.0111

  9. Eagleson, R., et al.: Implementation of clinical research trials using web-based and mobile devices: challenges and solutions. BMC Med. Res. Methodol. 17, 43 (2017). https://doi.org/10.1186/s12874-017-0324-6

    Article  Google Scholar 

  10. Chen, J., Bauman, A., Allman-Farinelli, M.: A study to determine the most popular lifestyle smartphone applications and willingness of the public to share their personal data for health research. Telemed. J. e Health 22, 655e65 (2016). https://doi.org/10.1089/tmj.2015.0159

  11. Bellei, E.A., Biduski, D., Cechetti, N.P., De Marchi, A.C.B.: Diabetes mellitus m-health applications: a systematic review of features and fundamentals. Telemed. J. e Health 24, 839e52 (2018). https://doi.org/10.1089/tmj.2017.0230

  12. Sudhir, P.M.: Advances in psychological interventions for lifestyle disorders. Curr. Opin. Psychiatr. 30, 346e51 (2017). https://doi.org/10.1097/YCO.0000000000000348

  13. Bashshur, R.L., Shannon, G., Krupinski, E.A., Grigsby, J.: Sustaining and realizing the promise of telemedicine. Telemed. J. E Health 19(5), 339–345 (2013). https://doi.org/10.1089/tmj.2012.0282. [Medline: 23289907]

  14. Granja, C., Janssen, W., Johansen, M.A.: Factors determining the success and failure of eHealth interventions: systematic review of the literature. J. Med. Internet Res. 20(5), e10235 (2018)

    Google Scholar 

  15. Neville, R., Greene, A., McLeod, J., Tracey, A., Tracy, A., Surie, J.: Mobile phone text messaging can help young people manage asthma. Br. Med. J. 325(7364), 600 (2002). https://doi.org/10.1136/bmj.325.7364.600/a. [Medline: 12228151]

  16. Hall, A.K., Cole-Lewis, H., Bernhardt, J.M.: Mobile text messaging for health: a systematic review of reviews. Ann. Rev. Public Health 36, 393–415 (2015). https://doi.org/10.1146/annurev-publhealth-031914-122855. [Medline: 25785892]

  17. Rathbone, A.L., Prescott, J.: The use of mobile apps and SMS messaging as physical and mental health interventions: systematic review. J. Med. Internet Res. 19(8), e295 (2017). https://doi.org/10.2196/jmir.7740. [Medline: 28838887]

  18. Car, L.T., et al.: Conversational agents in health care: scoping review and conceptual analysis. J. Med. Internet Res. 22(8), e17158 (2020)

    Google Scholar 

  19. Hoermann, S., McCabe, K.L., Milne, D.N., Calvo, R.A.: Application of synchronous text-based dialogue systems in mental health interventions: systematic review. J. Med. Internet Res. 19(8), e267 (2017). https://doi.org/10.2196/jmir.7023. [Medline: 28784594]

  20. Tropea, P., et al.: Rehabilitation, the great absentee of virtual coaching in medical care: scoping review. J. Med. Internet Res. 21(10), e12805 (2019). https://doi.org/10.2196/12805. [Medline: 31573902]

  21. Provoost, S., Lau, H.M., Ruwaard, J., Riper, H.: Embodied conversational agents in clinical psychology: a scoping review. J. Med. Internet Res. 19(5), e151 (2017). https://doi.org/10.2196/jmir.6553. [Medline: 28487267]

  22. Pereira, J., Díaz, O.: Using health chatbots for behavior change: a mapping study. J. Med. Syst. 43(5), 135 (2019). https://doi.org/10.1007/s10916-019-1237-1. [Medline: 30949846]

  23. Xing, Z., et al.: Conversational interfaces for health: bibliometric analysis of grants, publications, and patents. J. Med. Internet Res. 21(11), e14672 (2019). https://doi.org/10.2196/14672. [Medline: 31738171]

  24. Følstad, A., Brandtzæg, P.B.: Chatbots and the new world of HCI. Interactions 24(4), 38–42 (2017)

    Article  Google Scholar 

  25. Grosz, A.J., et al.: Artificial Intelligence and Life in 2030: One Hundred Year Study on Artificial Intelligence. Stanford University (2016)

    Google Scholar 

  26. Radziwill, N.M., Benton, M.C.: Evaluating Quality of Chatbots and Intelligent Conversational Agents, April 2017

    Google Scholar 

  27. Wolters, M.K., Kelly, F., Kilgour, J.: Designing a spoken dialogue interface to an intelligent cognitive assistant for people with dementia. Health Inform. J. 22(4), 854–866 (2016)

    Article  Google Scholar 

  28. Bickmore, T.W., Schulman, D., Sidner, C.: Automated interventions for multiple health behaviors using conversational agents. Patient Educ. Couns. 92(2), 142–148 (2013)

    Article  Google Scholar 

  29. Denecke, K., Tschanz, M., Dorner, T., May, R.: Intelligent conversational agents in healthcare: hype or hope? Stud. Health Technol. Inform. 259, 77–84 (2019)

    Google Scholar 

  30. Barak, A., Klein, B., Proudfoot, J.G.: Defining internet-supported therapeutic interventions. Ann. Behav. Med. 38(1), 4–17 (2009). https://doi.org/10.1007/s12160-009-9130-7. ID: Barak2009

  31. Goldstein, I.M., Lawrence, J., Miner, A.S.: Human-machine collaboration in cancer and beyond: the centaur care model. JAMA Oncol. 3, 1303–1304 (2017)

    Article  Google Scholar 

  32. Cameron, G., et al.: Towards a Chatbot for digital counselling. In: Proceedings of the 31st British Computer Society Human Computer Interaction Conference (HCI 2017). BCS Learning & Development Ltd., Swindon, UK, pp. 24:1–24:7 (2017). https://doi.org/10.14236/ewic/HCI2017.24

  33. Kumar, V.M., Keerthana, A., Madhumitha, M., Valliammai, S. Vinithasri, V.:Sanative Chatbot For Health Seekers (2016)

    Google Scholar 

  34. Lokman, A.S., Zain, J.M., Komputer, F.S., Perisian, K.: Designing a Chatbot for diabetic patients (2009)

    Google Scholar 

  35. Comendador, B.E.V., Francisco, B.M.B., Medenilla, J.S., Mae, S.: Pharmabot: a pediatric generic medicine consultant chatbot. J. Autom. Control Eng. 3(2) (2015)

    Google Scholar 

  36. Ilić, D.T., Marković, B.: Possibilities, Limitations and economic aspects of artificial intelligence applications in healthcare. Ecoforum J. 5(1) (2016)

    Google Scholar 

  37. Bibault, J.E., Chaix, B., Nectoux, P., Pienkowski, A., Guillemasé, A., Brouard, B.: Healthcare ex Machina: are conversational agents ready for prime time in oncology? Clin. Transl. Radiat. Oncol. 16, 55–59 (2019)

    Article  Google Scholar 

  38. Aha, D.W., Breslow, L.A., Muñoz-Avila, H.: Conversational case-based reasoning. J. Appl. Intell. 14(1), 9–32 (2001). https://doi.org/10.1023/a:1008346807097

    Article  MATH  Google Scholar 

  39. Thompson, C.A., Goker, M.H., Langley, P.: A personalized system for conversational recommendations. J. Artif. Intell. Res. 21, 393–428 (2004). https://doi.org/10.1613/jair.1318

    Article  Google Scholar 

  40. Rich, E.: User modeling via stereotypes. In: Maybury, M.T., Wahlster, W. (eds.) Readings in Intelligent User Interfaces, pp. 329–342. Morgan Kaufmann Publishers Inc., San Francisco (1998)

    Google Scholar 

  41. Chen, L., Pu, P.: Critiquing-based recommenders: survey and emerging trends. User Model. User-Adap. Inter. 22(1–2), 125–150 (2012). https://doi.org/10.1007/s11257-011-9108-6

    Article  Google Scholar 

  42. Kim, Y., Bang, J., Choi, J., Ryu, S., Koo, S., Lee, G.G.: Acquisition and Use of Long-Term Memory for Personalized Dialog Systems. In: Böck, R., Bonin, F., Campbell, N., Poppe, R. (eds.) Multimodal Analyses enabling Artificial Agents in Human-Machine Interaction. MA3HMI 2014. LNCS, vol. 8757, pp. 78–87. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-15557-9_8

  43. Levin, E., Levin, A.: Evaluation of spoken dialogue technology for real-time health data collection. J. Med. Internet Res. 8(4), e30 (2006). https://doi.org/10.2196/jmir.8.4.e30. [Medline: 17213048]

  44. Kocaballi, A.B., et al. The personalization of conversational agents in health care: systematic review. J. Med. Internet Res. 21(11), e15360 (2019). https://doi.org/10.2196/15360. [Medline: 31697237]

  45. Pargellis, A., Kuo, H., Lee, C.: An automatic dialogue generation platform for personalized dialogue applications. Speech Commun. 42(3–4), 329–351 (2004). https://doi.org/10.1016/j.specom.2003.10.003

  46. Litman, D.J., Pan, S.: Designing and evaluating an adaptive spoken dialogue system. User Model. User-Adap. Inter. 2–3, 111–137 (2002). https://doi.org/10.1023/A:1015036910358

    Article  MATH  Google Scholar 

  47. Sharp, H., Rogers, Y., Preece, J.: Interaction Design: Beyond Human-Computer Interaction, 5th edn. Wiley (2019)

    Google Scholar 

  48. Alahäivälä, T., Oinas-Kukkonen, H.: Understanding persuasion contexts in health gamification: a systematic analysis of gamified health behavior change support systems literature. Int. J. Med. Inform. 96, 62–70 (2016)

    Article  Google Scholar 

  49. Sardi, L., Idri, A., Fernández-Alemán, J.L.: A systematic review of gamification in e-Health. J. Biomed. Inform. 71, 31–48 (2017)

    Article  Google Scholar 

  50. Baumeister, H., Kraft, R., Baumel, A., Pryss, R., Messner, E.-M.: Persuasive e-health design for behavior change. In: Baumeister, H., Montag, C. (eds.) Digital Phenotyping and Mobile Sensing. SNPBE, pp. 261–276. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31620-4_17

    Chapter  Google Scholar 

  51. Abd-Alrazaq, A., Safi, Z., Alajlani, M., Warren, J., Househ, M., Denecke, K.: Technical metrics used to evaluate health care chatbots: scoping review. J. Med. Internet Res. 22(6), e18301 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrik Pluchino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gamberini, L. et al. (2021). PatchAi: An e-Health Application Powered by an AI Virtual Assistant to Support Patients in Their Clinical Trials. In: Stephanidis, C., Antona, M., Ntoa, S. (eds) HCI International 2021 - Posters. HCII 2021. Communications in Computer and Information Science, vol 1421. Springer, Cham. https://doi.org/10.1007/978-3-030-78645-8_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78645-8_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78644-1

  • Online ISBN: 978-3-030-78645-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics