Skip to main content

A Multi-step Machine Learning Approach for Short Axis MR Images Segmentation

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2021)

Abstract

Segmentation of cardiac magnetic resonance (cMR) images is often the first step necessary to compute common diagnostic biomarkers, such as myocardial mass and left ventricle (LV) ejection fraction. Often image segmentation and analysis require significant, time-consuming user input. Machine learning has been increasingly adopted to automatically segment medical images to lessen the burden on image segmentation and image analysis for model construction and validation. In this work we present a multi-step machine learning approach to segment short axis cMR images based on a heart locator and the weighted average of 2D and 2D++ UNets. The presence of a heart locator led to more accurate results and allowed to increase the neural network training batch size. Finally, the obtained segmentations are post-processed using spline interpolation and the Loop scheme to generate left ventricular endocardial and epicardial surfaces at the end of diastole and end of systole.

Supported by the University of Central Florida, Mechanical and Aerospace Engineering Department.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ayachit, U.: The ParaView Guide: A Parallel Visualization Application. Kitware (2015)

    Google Scholar 

  2. Baumgartner, C.F., Koch, L.M., Pollefeys, M., Konukoglu, E.: An exploration of 2D and 3D deep learning techniques for cardiac MR image segmentation. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 111–119. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_12

    Chapter  Google Scholar 

  3. Bernard, O., et al.: Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: is the problem solved? IEEE Trans. Med. Imaging 37(11), 2514–2525 (2018)

    Article  Google Scholar 

  4. Chen, C., et al.: Deep learning for cardiac image segmentation: a review. Front. Cardiovasc. Med. 7, 25 (2020). https://doi.org/10.3389/fcvm.2020.00025. https://www.frontiersin.org/article/10.3389/fcvm.2020.00025

    Article  Google Scholar 

  5. Ferdian, E., et al.: Fully automated myocardial strain estimation from cardiovascular MRI–tagged images using a deep learning framework in the UK Biobank. Radiol. Cardiothorac. Imaging 2(1), e190032 (2020). https://doi.org/10.1148/ryct.2020190032

  6. Grinias, E., Tziritas, G.: Fast fully-automatic cardiac segmentation in MRI using MRF model optimization, substructures tracking and B-spline smoothing. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 91–100. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_10

    Chapter  Google Scholar 

  7. Isensee, F., Jaeger, P.F., Full, P.M., Wolf, I., Engelhardt, S., Maier-Hein, K.H.: Automatic cardiac disease assessment on cine-MRI via time-series segmentation and domain specific features. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 120–129. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_13

    Chapter  Google Scholar 

  8. Isensee, F., Jaeger, P.F., Kohl, S.A.A., Petersen, J., Maier-Hein, K.H.: nnU-Net: a self-configuring method for deep learning-based biomedical image segmentation. Nat. Methods (2020). https://doi.org/10.1038/s41592-020-01008-z

  9. Islam, M., Vibashan, V.S., Jose, V.J.M., Wijethilake, N., Utkarsh, U., Ren, H.: Brain tumor segmentation and survival prediction using 3D attention UNet. In: Crimi, A., Bakas, S. (eds.) BrainLes 2019, Part I. LNCS, vol. 11992, pp. 262–272. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-46640-4_25

    Chapter  Google Scholar 

  10. Jodoin, P.M., Lalande, A., Bernard, O., Humbert, O., Zotti, C., Cervenansky, F.: Automated cardiac diagnosis challenge. https://acdc.creatis.insa-lyon.fr/

  11. Khened, M., Kollerathu, V.A., Krishnamurthi, G.: Fully convolutional multi-scale residual DenseNets for cardiac segmentation and automated cardiac diagnosis using ensemble of classifiers. Med. Image Anal. 51, 21–45 (2019). https://doi.org/10.1016/j.media.2018.10.004. https://www.sciencedirect.com/science/article/pii/S136184151830848X

  12. Li, S., Zhang, J., Ruan, C., Zhang, Y.: Multi-stage attention-Unet for wireless capsule endoscopy image bleeding area segmentation. In: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 818–825 (2019). https://doi.org/10.1109/BIBM47256.2019.8983292

  13. Li, S., Chen, Y., Yang, S., Luo, W.: Cascade dense-Unet for prostate segmentation in MR images. In: Huang, D.-S., Bevilacqua, V., Premaratne, P. (eds.) ICIC 2019, Part I. LNCS, vol. 11643, pp. 481–490. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26763-6_46

    Chapter  Google Scholar 

  14. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017). https://doi.org/10.1016/j.media.2017.07.005

    Article  Google Scholar 

  15. Oktay, O., et al.: Attention U-Net: learning where to look for the pancreas (2018)

    Google Scholar 

  16. Simard, P.Y., Steinkraus, D., Platt, J.C.: Best practices for convolutional neural networks applied to visual document analysis. In: ICDAR, vol. 3 (2003)

    Google Scholar 

  17. Viana, F.A.C., Haftka, R.T., Steffen, V.: Multiple surrogates: how cross-validation errors can help us to obtain the best predictor. Struct. Multi. Optim. 39(4), 439–457 (2009). https://doi.org/10.1007/s00158-008-0338-0

    Article  Google Scholar 

  18. Yang, X., Bian, C., Yu, L., Ni, D., Heng, P.-A.: Class-balanced deep neural network for automatic ventricular structure segmentation. In: Pop, M., et al. (eds.) STACOM 2017. LNCS, vol. 10663, pp. 152–160. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75541-0_16

    Chapter  Google Scholar 

  19. Zhou, Z., Rahman Siddiquee, M.M., Tajbakhsh, N., Liang, J.: UNet++: a nested U-Net architecture for medical image segmentation. In: Stoyanov, D., et al. (eds.) DLMIA/ML-CDS -2018. LNCS, vol. 11045, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00889-5_1

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andre Von Zuben .

Editor information

Editors and Affiliations

Appendix

Appendix

A complete prediction from the framework shown in Fig. 2 is illustrated in Fig. 7 using a representative midventricular slice. This example highlights the role of the weighted average approach as an insurance policy, as well as the spline as a way to further smooth the final LV contour.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Von Zuben, A., Heckman, K., Viana, F.A.C., Perotti, L.E. (2021). A Multi-step Machine Learning Approach for Short Axis MR Images Segmentation. In: Ennis, D.B., Perotti, L.E., Wang, V.Y. (eds) Functional Imaging and Modeling of the Heart. FIMH 2021. Lecture Notes in Computer Science(), vol 12738. Springer, Cham. https://doi.org/10.1007/978-3-030-78710-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78710-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78709-7

  • Online ISBN: 978-3-030-78710-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics