Skip to main content

From Clinical Imaging to Patient-Specific Computational Model: Rapid Adaptation of the Living Heart Human Model to a Case of Aortic Stenosis

  • Conference paper
  • First Online:
Functional Imaging and Modeling of the Heart (FIMH 2021)

Abstract

Aortic stenosis (AS) is the most common acquired heart valve disease in the developed world. Traditional methods of grading AS have relied on the measurement of aortic valve area and transvalvular pressure gradient. Recent research has highlighted the existence of AS variants that do not meet classic criteria for severe AS such as low-flow, low-gradient AS. With the development of sophisticated multi-scale computational models, investigation into the left ventricular (LV) biomechanics of AS offers new insights into the pathophysiology that may guide treatment decisions surrounding AS. Building upon our prior study entailing LV-aortic coupling where AS conditions were applied to the idealized geometry of the Living Heart Human Model, we now describe the first patient-specific adaptation of the model to a case of low flow, low gradient AS. EKG-gated cardiac computed tomography images were segmented to provide surfaces to which the generic Living Heart model was adapted. The model was coupled to a lumped-parameter circulatory system; it was then calibrated to patient clinical data from echocardiography/cardiac catheterization with strong correlation (simulation versus clinical measurement): ascending aorta systolic pressure: 109 mmHg vs 116 mmHg, ascending aorta diastolic pressure 50 mmHg vs 45 mmHg, LV systolic pressure: 118 mmHg vs 128 mmHg, peak transvalvular gradient: 9 mmHg vs 12 mmHg, LV ejection fraction: 23% vs 25%. This work illustrates how the Living Heart Human Model geometry can be efficiently adapted to patient-specific parameters, enabling future biomechanics investigations into the LV dysfunction of AS.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lindman, B.R., Bonow, R.O., Otto, C.M.: Current management of calcific aortic stenosis. Circ. Res. 113(2), 223–237 (2013). https://doi.org/10.1161/circresaha.111.300084

    Article  Google Scholar 

  2. Miura, S., et al.: Causes of death and mortality and evaluation of prognostic factors in patients with severe aortic stenosis in an aging society. J. Cardiol. 65(5), 353–359 (2015). https://doi.org/10.1016/j.jjcc.2015.02.011

    Article  Google Scholar 

  3. Carroll, J.D., et al.: STS-ACC TVT registry of transcatheter aortic valve replacement. Ann. Thorac. Surg. 111(2), 701–722 (2021). https://doi.org/10.1016/j.athoracsur.2020.09.002

    Article  Google Scholar 

  4. Hachicha, Z., Dumesnil, J.G., Bogaty, P., Pibarot, P.: Paradoxical low-flow, low-gradient severe aortic stenosis despite preserved ejection fraction is associated with higher afterload and reduced survival. Circulation 115(22), 2856–2864 (2007). https://doi.org/10.1161/circulationaha.106.668681

    Article  Google Scholar 

  5. Pibarot, P., Dumesnil, J.G.: Low-flow, low-gradient aortic stenosis with normal and depressed left ventricular ejection fraction. J Am. Coll. Cardiol. 60(19), 1845–1853 (2012). https://doi.org/10.1016/j.jacc.2012.06.051

    Article  Google Scholar 

  6. Wisneski, A.D., et al.: Impact of aortic stenosis on myofiber stress: translational application of left ventricle-aortic coupling simulation. Front. Physiol. 11, 1157 (2020). https://doi.org/10.3389/fphys.2020.574211

    Article  Google Scholar 

  7. Baillargeon, B., Rebelo, N., Fox, D.D., Taylor, R.L., Kuhl, E.: The living heart project: a robust and integrative simulator for human heart function. Eur. J. Mech. A Solids 48, 38–47 (2014). https://doi.org/10.1016/j.euromechsol.2014.04.001

    Article  MathSciNet  MATH  Google Scholar 

  8. Genet, M., et al.: Distribution of normal human left ventricular myofiber stress at end diastole and end systole: a target for in silico design of heart failure treatments. J. Appl. Physiol. 117(2), 142–152 (2014). https://doi.org/10.1152/japplphysiol.00255.2014

    Article  Google Scholar 

  9. Sack, K.L., Dabiri, Y., Franz, T., Solomon, S.D., Burkhoff, D., Guccione, J.M.: Investigating the role of interventricular interdependence in development of right heart dysfunction during LVAD support: a patient-specific methods-based approach. Front. Physiol. 9, 520 (2018). https://doi.org/10.3389/fphys.2018.00520

    Article  Google Scholar 

  10. Holzapfel, G.A., Ogden, R.W.: Constitutive modelling of passive myocardium: a structurally based framework for material characterization. Philos. Trans. A Math. Phys. Eng. Sci. 367(1902), 3445–3475 (2009). https://doi.org/10.1098/rsta.2009.0091

    Article  MathSciNet  MATH  Google Scholar 

  11. Guccione, J.M., McCulloch, A.D.: Mechanics of active contraction in cardiac muscle: Part I-Constitutive relations for fiber stress that describe deactivation. J. Biomech. Eng. 115(1), 72–81 (1993). https://doi.org/10.1115/1.2895473

    Article  Google Scholar 

  12. Walker, J.C., et al.: MRI-based finite-element analysis of left ventricular aneurysm. Am. J. Physiol. Heart Circ. Physiol. 289(2), H692–H700 (2005). https://doi.org/10.1152/ajpheart.01226.2004

    Article  Google Scholar 

  13. Sommer, G., et al.: Biomechanical properties and microstructure of human ventricular myocardium. Acta Biomater. 24, 172–192 (2015). https://doi.org/10.1016/j.actbio.2015.06.031

    Article  Google Scholar 

  14. Klotz, S., et al.: Single-beat estimation of end-diastolic pressure-volume relationship: a novel method with potential for noninvasive application. Am. J. Physiol. Heart Circ. Physiol. 291(1), H403–H412 (2006). https://doi.org/10.1152/ajpheart.01240.2005

    Article  Google Scholar 

  15. Dabiri, Y., et al.: Method for calibration of left ventricle material properties using 3D echocardiography endocardial strains. J. Biomech. Eng. 141(9), 0910071–09100710 (2019). https://doi.org/10.1115/1.4044215

    Article  Google Scholar 

  16. Wenk, J.F., et al.: First evidence of depressed contractility in the border zone of a human myocardial infarction. Ann. Thorac. Surg. 93(4), 1188–1193 (2012). https://doi.org/10.1016/j.athoracsur.2011.12.066

    Article  Google Scholar 

  17. Cerqueira, M.D., et al.: Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the Cardiac Imaging Committee of the Council on Clinical Cardiology of the American Heart Association. Circulation 105(4), 539–542 (2002). https://doi.org/10.1161/hc0402.102975

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgement

We thank Pamela Derish in the Department of Surgery, University of California, San Francisco, for assistance with proofreading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julius M. Guccione .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (MP4 4618 kb)

Supplementary file2 (MP4 6910 kb)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wisneski, A.D. et al. (2021). From Clinical Imaging to Patient-Specific Computational Model: Rapid Adaptation of the Living Heart Human Model to a Case of Aortic Stenosis. In: Ennis, D.B., Perotti, L.E., Wang, V.Y. (eds) Functional Imaging and Modeling of the Heart. FIMH 2021. Lecture Notes in Computer Science(), vol 12738. Springer, Cham. https://doi.org/10.1007/978-3-030-78710-3_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78710-3_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78709-7

  • Online ISBN: 978-3-030-78710-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics