Skip to main content

An Intelligent Algorithm for AGV Scheduling in Intelligent Warehouses

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12689))

Included in the following conference series:

Abstract

In today’s intelligent warehouses, automated guided vehicles (AGVs) are widely used, and their scheduling efficiency is crucial to the overall performance of warehouse business. However, AGV scheduling is a complex problem, especially when there are a large number of tasks to be undertaken by multiple AGVs in a large warehouse. In this paper, we present a problem of scheduling multiple AGVs for order picking in intelligent warehouse, the aim of which is to minimize the latest completion time of all orders. After testing a variety of algorithms, we propose a hybrid water wave optimization (WWO) and tabu search (TS) algorithm for efficiently solving the problem. We test the algorithm on a set of problem instances with different sizes, and the results show that the proposed algorithm exhibits significant performance advantages over a number of popular intelligent optimization algorithms.

Supported by National Natural Science Foundation of China (Grant 61872123) and Natural Science Foundation of Zhejiang Province (Grant LR20F030002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chiang, D.M.H., Lin, C.P., Chen, M.C.: The adaptive approach for storage assignment by mining data of warehouse management system for distribution centres. Enterp. Inf. Syst. 5(2), 219–234 (2011)

    Article  Google Scholar 

  2. Chu, P.C., Beasley, J.E.: A genetic algorithm for the multidimensional knapsack problem. J. Heuristics 4(1), 63–86 (1998)

    Article  Google Scholar 

  3. Glover, F.: Tabu search - part I. ORSA J. Comput. 1(3), 190–206 (1989)

    Article  Google Scholar 

  4. Hembecker, F., Lopes, H.S., Godoy, W.: Particle swarm optimization for the multidimensional knapsack problem. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4431, pp. 358–365. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71618-1_40

    Chapter  Google Scholar 

  5. Ling, H.F., Su, Z.L., Jiang, X.L., Zheng, Y.J.: Multi-objective optimization of integrated civilian-military scheduling of medical supplies for epidemic prevention and control. Healthcare 9(2), 126 (2021)

    Article  Google Scholar 

  6. Pinkam, N., Bonnet, F., Chong, N.Y.: Robot collaboration in warehouse. In: 16th International Conference on Control, Automation and Systems, pp. 269–272. IEEE (2016)

    Google Scholar 

  7. Qing, G., Zheng, Z., Yue, X.: Path-planning of automated guided vehicle based on improved dijkstra algorithm. In: 29th Chinese Control and Decision Conference, pp. 7138–7143. IEEE (2017)

    Google Scholar 

  8. Qiu, L., Wang, J., Chen, W., Wang, H.: Heterogeneous AGV routing problem considering energy consumption. In: IEEE International Conference on Robotics and Biomimetics, pp. 1894–1899. IEEE (2015)

    Google Scholar 

  9. Saidi-Mehrabad, M., Dehnavi-Arani, S., Evazabadian, F., Mahmoodian, V.: An ant colony algorithm (ACA) for solving the new integrated model of job shop scheduling and conflict-free routing of AGV. Comput. Ind. Eng. 86, 2–13 (2015)

    Article  Google Scholar 

  10. Simon, D.: Biogeography-based optimization. IEEE Trans. Evol. Comput. 12(6), 702–713 (2008)

    Article  Google Scholar 

  11. Smolic-Rocak, N., Bogdan, S., Kovacic, Z., Petrovic, T.: Time windows based dynamic routing in multi-AGV systems. IEEE Trans. Autom. Sci. Eng. 7(1), 151–155 (2009)

    Article  Google Scholar 

  12. Tasgetiren, M.F., Pan, Q.K., Kizilay, D., Suer, G.: A differential evolution algorithm with variable neighborhood search for multidimensional knapsack problem. In: IEEE Congress on Evolutionary Computation,pp. 2797–2804. IEEE (2015)

    Google Scholar 

  13. Umar, U.A., Ariffin, M.K.A., Ismail, N., Tang, S.H.: Hybrid multiobjective genetic algorithms for integrated dynamic scheduling and routing of jobs and automated-guided vehicle (AGV) in flexible manufacturing systems (FMS) environment. Int. J. Adv. Manuf. Technol. 2123–2141 (2015). https://doi.org/10.1007/s00170-015-7329-2

  14. Vivaldini, K., Rocha, L.F., Martarelli, N.J., Becker, M., Moreira, A.P.: Integrated tasks assignment and routing for the estimation of the optimal number of agvs. Int. J. Adv. Manuf. Technol. 82(1–4), 719–736 (2016)

    Article  Google Scholar 

  15. Vivaldini, K.C., et al.: Robotic forklifts for intelligent warehouses: routing, path planning, and auto-localization. In: IEEE International Conference on Industrial Technology, pp. 1463–1468. IEEE (2010)

    Google Scholar 

  16. Xing, L., Liu, Y., Li, H., Wu, C.C., Lin, W.C., Chen, X.: A novel tabu search algorithm for multi-AGV routing problem. Mathematics 8(2), 279 (2020)

    Article  MathSciNet  Google Scholar 

  17. Zhang, Z., Guo, Q., Chen, J., Yuan, P.: Collision-free route planning for multiple AGVS in an automated warehouse based on collision classification. IEEE Access 6, 26022–26035 (2018)

    Article  Google Scholar 

  18. Zheng, Y.J.: Water wave optimization: a new nature-inspired metaheuristic. Comput. Oper. Res. 55, 1–11 (2015)

    Article  MathSciNet  Google Scholar 

  19. Zheng, Y.J., Ling, H.F., Xue, J.Y.: Ecogeography-based optimization: enhancing biogeography-based optimization with ecogeographic barriers and differentiations. Comput. Oper. Res. 50, 115–127 (2014)

    Article  Google Scholar 

  20. Zheng, Y.J., Lu, X.Q., Du, Y.C., Xue, Y., Sheng, W.G.: Water wave optimization for combinatorial optimization: Design strategies and applications. Appl. Soft Comput. 83, 105611 (2019)

    Article  Google Scholar 

  21. Zheng, Y.J., Zhang, B.: A simplified water wave optimization algorithm. In: 2015 IEEE Congress on Evolutionary Computation (CEC), pp. 807–813. IEEE (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Jun Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wu, X., Zhang, MX., Zheng, YJ. (2021). An Intelligent Algorithm for AGV Scheduling in Intelligent Warehouses. In: Tan, Y., Shi, Y. (eds) Advances in Swarm Intelligence. ICSI 2021. Lecture Notes in Computer Science(), vol 12689. Springer, Cham. https://doi.org/10.1007/978-3-030-78743-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78743-1_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78742-4

  • Online ISBN: 978-3-030-78743-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics