Skip to main content

Classification of Imbalanced Fetal Health Data by PSO Based Ensemble Recursive Feature Elimination ANN

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2021)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12690))

Included in the following conference series:

Abstract

Electrocardiogram (CTG) is a simple and low-cost option to assess the health of the fetus. However, the number of normal fetuses is larger than the number of abnormal fetuses, leading to imbalances in CTG data. Existing studies have attempted to optimize the data processing or model training process by integrating machine learning methods with optimization algorithms. However, the effectiveness of features and appropriate selection of machine learning method creates new challenges. This study proposed an comprehensive method that considers the feature effectiveness and data imbalance issue. The proposed method uses the Particle Swarm Optimization (PSO) algorithm to optimize the parameters of the Edited Nearest Neighbours (ENN), Recursive Feature Elimination (RFE), and Artificial Neural Network (ANN) algorithms to find the optimal combination of the parameters of the three algorithms to further improve the accuracy of the fetal health prediction and reduce the cost of tuning. Experimental results show that the algorithm proposed in this paper can effectively solve the imbalance of CTG data, with a classification accuracy of 0.9942 and a kappa measure of 0.9783, which can effectively assist doctors in diagnosing fetal health and improve the quality of hospital visits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Campos, D.A., et al.: Sisporto 2.0: a program for automated analysis of cardiotocograms. J. Maternaletal Med. 9(5), 311–18 (2000)

    Google Scholar 

  2. Bach, M., Werner, A., Ywiec, J., Pluskiewicz, W.: The study of under- and over-sampling methods’ utility in analysis of highly imbalanced data on osteoporosis. Inf. Sci. 384, 174–190 (2016)

    Article  Google Scholar 

  3. Brezočnik, L., Fister, I., Podgorelec, V.: Swarm intelligence algorithms for feature selection: a review. Appl. Sci. 8(9), 1521 (2018)

    Article  Google Scholar 

  4. Chang, C.L., Chen, C.H.: Applying decision tree and neural network to increase quality of dermatologic diagnosis. Exp. Syst. Appl. 36(2 Part 2), 4035–4041 (2009)

    Article  Google Scholar 

  5. Wei, J., et al.: Imbalanced cardiotocography multi-classification for antenatal fetal monitoring using weighted random forest. In: Chen, H., Zeng, D., Yan, X., Xing, C. (eds.) ICSH 2019. LNCS, vol. 11924, pp. 75–85. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-34482-5_7

    Chapter  Google Scholar 

  6. Das, S., Mukherjee, H., Obaidullah, S.M., Roy, K., Saha, C.K.: Ensemble based technique for the assessment of fetal health using cardiotocograph – a case study with standard feature reduction techniques. Multimedia Tools Appl. 79(47), 35147–35168 (2020). https://doi.org/10.1007/s11042-020-08853-2

    Article  Google Scholar 

  7. Ersen, Y., Kilikçier, K.: Determination of fetal state from cardiotocogram using LS-SVM with particle swarm optimization and binary decision tree. Comput. Math. Meth. Med. 2013, 487179 (2013)

    MATH  Google Scholar 

  8. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer classification using support vector machines. Mach. Learn. 46(1–3), 389–422 (2002)

    Article  Google Scholar 

  9. Huang, M.L., Hsu, Y.Y.: Fetal distress prediction using discriminant analysis, decision tree, and artificial neural network. J. Biomed. Sci. Eng. 05(9), 526–533 (2012)

    Article  Google Scholar 

  10. Kadhim, N., Abed, J.K.: Enhancing the prediction accuracy for cardiotocography (CTG) using firefly algorithm and Naive Bayesian classifier. IOP Conf. Ser. Mater. Sci. Eng. 745(1), 012101 (2020)

    Article  Google Scholar 

  11. Nguyen, B.H., Xue, B., Zhang, M.: A survey on swarm intelligence approaches to feature selection in data mining. Swarm Evol. Comput. 54, 100663 (2020)

    Article  Google Scholar 

  12. Ocak, H.: A medical decision support system based on support vector machines and the genetic algorithm for the evaluation of fetal well-being. J. Med. Syst. 37(2), 9913 (2013)

    Article  Google Scholar 

  13. Ohno, Y., et al.: Assessment of fetal heart rate variability with abdominal fetal electrocardiogram: changes during fetal breathing movement. Asia-Oceania J. Obstet. Gynaecol. 12(2), 301–304 (2010)

    Article  Google Scholar 

  14. Rana, R., Pruthi, J.: Naive Bayes classification (2014)

    Google Scholar 

  15. Richhariya, B., Tanveer, M., Rashid, A.H.: Diagnosis of Alzheimer’s disease using universum support vector machine based recursive feature elimination (USVM-RFE). Biomed. Sig. Process. Control 59, 101903 (2020)

    Article  Google Scholar 

  16. Sahin, H., Subasi, A.: Classification of the cardiotocogram data for anticipation of fetal risks using machine learning techniques. Appl. Soft Comput. 33(C), 231–238 (2015)

    Article  Google Scholar 

  17. Saunders, C., et al.: Support vector machine. Comput. Sci. 1(4), 1–28 (2002)

    Google Scholar 

  18. Shah, S., Kusiak, A.: Cancer gene search with data-mining and genetic algorithms. Comput. Biol. Med. 37(2), 251–261 (2007)

    Article  Google Scholar 

  19. Signorini, M.G., Magenes, G., Cerutti, S., Arduini, D.: Linear and nonlinear parameters for the analysis of fetal heart rate signal from cardiotocographic recordings. IEEE Trans. Biomed. Eng. 50(3), 365–374 (2003)

    Article  Google Scholar 

  20. Smith Jr., J.F.: Fetal health assessment using prenatal diagnostic techniques. Curr. Opin. Obstet. Gynecol. 20(2), 152–156 (2008)

    Article  Google Scholar 

  21. Statistics, L.B., Breiman, L.: Random forests. In: Machine Learning, pp. 5–32 (2001)

    Google Scholar 

  22. Steyerberg, E.W., Eijkemans, M., Harrell, F.E., Habbema, J.: Prognostic modeling with logistic regression analysis: in search of a sensible strategy in small data sets. Med. Decis. Making 21(1), 45–56 (2001)

    Article  Google Scholar 

  23. Subasi, A., Kadasa, B., Kremic, E.: Classification of the cardiotocogram data for anticipation of fetal risks using bagging ensemble classifier. Procedia Comput. Sci. 168, 34–39 (2020)

    Article  Google Scholar 

  24. Sylvester, E.V., et al.: Applications of random forest feature selection for fine-scale genetic population assignment. Evol. Appl. 11, 153–165 (2018)

    Article  Google Scholar 

  25. Wheeler, T., Gennser, G., Lindvall, R., Murrills, A.J.: Changes in the fetal heart rate associated with fetal breathing and fetal movement. BJOG: Int. J. Obstet. Gynaecol. 87(12), 1068–1079 (2010)

    Article  Google Scholar 

  26. Zhao, F.Q., Zou, J.H., Yang, Y.H.: A hybrid approach based on artificial neural network (ANN) and differential evolution (DE) for job-shop scheduling problem. Appl. Mech. Mater. 26–28, 754–757 (2010)

    Article  Google Scholar 

  27. Zhou, Q., Hao, Z., Zhou, Q., Fan, Y., Luo, L.: Structure damage detection based on random forest recursive feature elimination. Mech. Syst. Sig. Process. 46(1), 82–90 (2014)

    Article  Google Scholar 

  28. Zou, J., Han, Y., So, S.S.: Overview of artificial neural networks. Meth. Mol. Biol. 458(458), 15 (2009)

    Google Scholar 

Download references

Acknowledgements

This study is supported by National Natural Science Foundation of China (71901150, 71702111, 71971143, 71901152), the Natural Science Foundation of Guangdong Province (2020A151501749), Shenzhen University Teaching Reform Project (Grants No. JG2020119) as well as Guangdong Basic and Applied Basic Research Foundation (Project No. 2019A1515011392).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaishan Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Gao, J., Huang, C., Huang, X., Huang, K., Wang, H. (2021). Classification of Imbalanced Fetal Health Data by PSO Based Ensemble Recursive Feature Elimination ANN. In: Tan, Y., Shi, Y. (eds) Advances in Swarm Intelligence. ICSI 2021. Lecture Notes in Computer Science(), vol 12690. Springer, Cham. https://doi.org/10.1007/978-3-030-78811-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78811-7_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78810-0

  • Online ISBN: 978-3-030-78811-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics